skin care sectinos

This commit is contained in:
jorts 2025-08-31 13:01:34 +01:00
parent 2cff93ee28
commit 81303a0947
5 changed files with 1707 additions and 1 deletions

View File

@ -335,11 +335,34 @@ I generally do not reccomend this. You may be able to achieve a better shape, bu
## Skin ## Skin
The most important tips:
- Wear SPF, cover up your skin, and wear hats and sunglasses to limit sun exposure which can cause premature aging.
- Use Retinol, and Hyaluronic acid for baby skin.
- Limit your alcohol intake and avoid tobacco, as well as hard drugs because they will age the fuck out of you.
- It also helps to keep an active lifestyle.
#### Suncream
The single most important thing is also the most boring. You should be applying suncream to your face everyday.
- [Sunscreen and prevention of skin aging: a randomized trial](https://pubmed.ncbi.nlm.nih.gov/23732711/){.source-link}
> regular use of sunscreen compared with discretionary use
>
> Skin aging from baseline to the end of the trial was 24% less in the daily sunscreen group than in the discretionary sunscreen group
- [Daily Use of a Facial Broad Spectrum Sunscreen Over One-Year Significantly Improves Clinical Evaluation of Photoaging](https://pubmed.ncbi.nlm.nih.gov/27749441/){.source-link}
> Clinical evaluations showed that all photoaging parameters improved significantly from baseline as early as Week 12 and the amelioration continued until Week 52. Skin texture, clarity, and mottled and discrete pigmentation were the most improved parameters by the end of the study (40% to 52% improvement from baseline), with 100% of subjects showing improvement in skin clarity and texture
You should wear suncream even if you only stay indoors but next to a window, as UVA is only partially blocked through glass, and can still have effects on aging of skin.
#### Retinoids #### Retinoids
Eg: Retinol, Retialdehyde, Tretinoin Eg: Retinol, Retialdehyde, Tretinoin
Causes skin to churn more often. Causes skin to churn more often, and makes it more fresh.
#### Niacinamide, Ceramides, Panthenol #### Niacinamide, Ceramides, Panthenol
@ -348,6 +371,19 @@ Help when skin barrier is damaged
* u/darthemofan: ["What to do when you've damaged your skin barrier?"](https://old.reddit.com/r/skinwhitening/comments/1bet4iv/what_to_do_when_youve_damaged_your_skin_barrier/){.source-link} * u/darthemofan: ["What to do when you've damaged your skin barrier?"](https://old.reddit.com/r/skinwhitening/comments/1bet4iv/what_to_do_when_youve_damaged_your_skin_barrier/){.source-link}
#### Matrixyl (palmitoyl peptides)
Some small, industry-adjacent trials show modest wrinkle improvements; evidence is promising but limited compared with retinoids. Safe to try as an add-on, just keep expectations realistic.
For example:
- [see general study on peptides](https://pmc.ncbi.nlm.nih.gov/articles/PMC11762834){.source-link}
#### Callogen supplements
Multiple RCT meta-analyses show modest benefits for skin hydration/elasticity after ~812 weeks. Source seems less important than dose and hydrolysis.
- [Effects of Oral Collagen for Skin Anti-Aging: A Systematic Review and Meta-Analysis](https://pmc.ncbi.nlm.nih.gov/articles/PMC10180699/){.source-link}
### Avoiding scarring ### Avoiding scarring
If cut, there is potential research on avoiding scar tissue from forming. If cut, there is potential research on avoiding scar tissue from forming.

View File

@ -0,0 +1,508 @@
<meta charset='utf-8'>
<base target='_blank'>
<style>
body{font-family:system-ui,sans-serif;max-width:50rem;margin:2rem auto;line-height:1.6;padding:1rem}
img,iframe{max-width:100%}
.post-content{background:#f9f9f9;padding:1rem;border-radius:5px;margin:1rem 0}
.archive-header{background:#f0f8ff;border:1px solid #e0e0e0;border-radius:5px;padding:0.75rem;margin-bottom:1rem;font-size:0.9rem}
.archive-info{margin-bottom:0.5rem;color:#666}
.archive-source{color:#666}
.archive-header a{color:#007acc;text-decoration:none}
.archive-header a:hover{text-decoration:underline}
@media (prefers-color-scheme: dark) {
.archive-header{background:#1a1a2e;border-color:#333;color:#e0e0e0}
.archive-info, .archive-source{color:#ccc}
.archive-header a{color:#66b3ff}
}
</style>
<div class="archive-header">
<div class="archive-info">
<strong>📄 Archived:</strong> 2025-08-31 11:55:42 UTC
</div>
<div class="archive-source">
<strong>🔗 Source:</strong> <a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC10180699/">https://pmc.ncbi.nlm.nih.gov/articles/PMC10180699/</a>
</div>
</div>
<script>
// Archive metadata for cache management
window.archiveData = {
url: 'https://pmc.ncbi.nlm.nih.gov/articles/PMC10180699/',
archivedAt: "2025-08-31T11:55:42.948485+00:00Z",
timestamp: 1756641342948
};
</script>
<hr>
<h1>Effects of Oral Collagen for Skin Anti-Aging: A Systematic Review and Meta-Analysis</h1>
<html><body><div><div class="d-panel p" id="aip_a">
<section aria-label="Article content"><section class="body main-article-body"><section class="abstract" id="abstract1"><h2 data-anchor-id="abstract1"><a id="abstract1-anchor" data-anchor-id="abstract1" class="usa-anchor"></a>Abstract</h2>
<p>This paper presents a systematic review and meta-analysis of 26 randomized controlled trials (RCTs) involving 1721 patients to assess the effects of hydrolyzed collagen (HC) supplementation on skin hydration and elasticity. The results showed that HC supplementation significantly improved skin hydration (test for overall effect: Z = 4.94, <em>p</em> &lt; 0.00001) and elasticity (test for overall effect: Z = 4.49, <em>p</em> &lt; 0.00001) compared to the placebo group. Subgroup analyses demonstrated that the effects of HC supplementation on skin hydration varied based on the source of collagen and the duration of supplementation. However, there were no significant differences in the effects of different sources (<em>p</em> = 0.21) of collagen or corresponding measurements (<em>p</em> = 0.06) on skin elasticity. The study also identified several biases in the included RCTs. Overall, the findings suggest that HC supplementation can have positive effects on skin health, but further large-scale randomized control trials are necessary to confirm these findings.</p>
<section id="kwd-group1" class="kwd-group"><p><strong>Keywords:</strong> oral collagen, skin, anti-aging, systematic review, meta-analysis</p></section></section><section id="sec1-nutrients-15-02080"><h2 class="pmc_sec_title" data-anchor-id="sec1-nutrients-15-02080"><a id="sec1-nutrients-15-02080-anchor" data-anchor-id="sec1-nutrients-15-02080" class="usa-anchor"></a>1. Introduction</h2>
<p>The skin, the largest organ of the body exposed to the external environment, is affected by both intrinsic and extrinsic factors in the aging process [<a href="#B1-nutrients-15-02080" class="usa-link" aria-describedby="B1-nutrients-15-02080" aria-expanded="false">1</a>]. Skin aging is characterized by dehydration, a loss of skin elasticity, and the presence of wrinkles [<a href="#B2-nutrients-15-02080" class="usa-link" aria-describedby="B2-nutrients-15-02080" aria-expanded="false">2</a>]. Skin aging has attracted considerable attention because of the increasingly high beauty standards. Because many countries are becoming aging societies, the psychosocial effects of skin aging increases the need for effective interventions [<a href="#B3-nutrients-15-02080" class="usa-link" aria-describedby="B3-nutrients-15-02080" aria-expanded="false">3</a>]. In this context, the use of nutraceuticals as supplements has increased in recent years [<a href="#B4-nutrients-15-02080" class="usa-link" aria-describedby="B4-nutrients-15-02080" aria-expanded="false">4</a>].</p>
<p>Collagen is the main protein structure of various connective tissues, which constitutes 80% of the dry weight of human skin [<a href="#B5-nutrients-15-02080" class="usa-link" aria-describedby="B5-nutrients-15-02080" aria-expanded="false">5</a>]. Collagen is characterized by a triple helix structure formed by the repetition of glycine every third residue, and particularly by proline and hydroxyproline in the other residues [<a href="#B6-nutrients-15-02080" class="usa-link" aria-describedby="B6-nutrients-15-02080" aria-expanded="false">6</a>]. Collagen, the most prevalent component of extracellular matrix, provides mechanical support and directs tissue development [<a href="#B7-nutrients-15-02080" class="usa-link" aria-describedby="B7-nutrients-15-02080" aria-expanded="false">7</a>].</p>
<p>Aging induces a decline in the enzymes involved in the post-translational processing of collagen, reducing the number of fibroblasts that synthesize collagen and vessels that supply the skin [<a href="#B8-nutrients-15-02080" class="usa-link" aria-describedby="B8-nutrients-15-02080" aria-expanded="false">8</a>]. The decline in skin quality with age is characterized by a reduction in collagen synthesis and a decrease in skin vascularity, leading to decreased elasticity and the formation of wrinkles [<a href="#B9-nutrients-15-02080" class="usa-link" aria-describedby="B9-nutrients-15-02080" aria-expanded="false">9</a>]. These changes are due to the decline in fibroblast activity and a decrease in the number of blood vessels in the skin [<a href="#B10-nutrients-15-02080" class="usa-link" aria-describedby="B10-nutrients-15-02080" aria-expanded="false">10</a>]. Therefore, the skin undergoes regressive changes with age such as dehydration, a loss of elasticity, and a reduction in epidermal thickness [<a href="#B11-nutrients-15-02080" class="usa-link" aria-describedby="B11-nutrients-15-02080" aria-expanded="false">11</a>]. Various nutrients and supplements are used to improve skin health and maintain a youthful skin appearance [<a href="#B12-nutrients-15-02080" class="usa-link" aria-describedby="B12-nutrients-15-02080" aria-expanded="false">12</a>]. These strategies include topical creams, injectable fillers, and collagen supplements. Topical creams contain collagen as one of the ingredients, and they are designed to enhance skin hydration and firmness [<a href="#B13-nutrients-15-02080" class="usa-link" aria-describedby="B13-nutrients-15-02080" aria-expanded="false">13</a>]. However, topical creams have limited ability to penetrate the skin, which can reduce their effectiveness [<a href="#B13-nutrients-15-02080" class="usa-link" aria-describedby="B13-nutrients-15-02080" aria-expanded="false">13</a>]. Injectable fillers such as hyaluronic acid fillers, stimulate collagen production and provide immediate results by plumping the skin [<a href="#B14-nutrients-15-02080" class="usa-link" aria-describedby="B14-nutrients-15-02080" aria-expanded="false">14</a>]. However, they can be expensive and come with the risk of adverse events such as bruising, swelling, and infection [<a href="#B14-nutrients-15-02080" class="usa-link" aria-describedby="B14-nutrients-15-02080" aria-expanded="false">14</a>]. On the other hand, collagen supplements, particularly those containing hydrolyzed collagen peptides, have been shown to be safe and cost-effective compared to other collagen-based strategies. Furthermore, collagen supplements have the advantage of being taken orally, making them easy to incorporate into daily routines [<a href="#B15-nutrients-15-02080" class="usa-link" aria-describedby="B15-nutrients-15-02080" aria-expanded="false">15</a>].</p>
<p>Among these supplements, hydrolyzed collagen (HC) is the most popular and promising skin anti-aging nutraceutical [<a href="#B16-nutrients-15-02080" class="usa-link" aria-describedby="B16-nutrients-15-02080" aria-expanded="false">16</a>]. Other studies have indicated that alaninehydroxyprolineglycine and serinehydroxyprolineglycine can be detected in human blood 1 h after the oral ingestion of HC [<a href="#B17-nutrients-15-02080" class="usa-link" aria-describedby="B17-nutrients-15-02080" aria-expanded="false">17</a>,<a href="#B18-nutrients-15-02080" class="usa-link" aria-describedby="B18-nutrients-15-02080" aria-expanded="false">18</a>] and deposited on the skin [<a href="#B19-nutrients-15-02080" class="usa-link" aria-describedby="B19-nutrients-15-02080" aria-expanded="false">19</a>].</p>
<p>A recent study demonstrated that HC improves skin hydration and elasticity [<a href="#B16-nutrients-15-02080" class="usa-link" aria-describedby="B16-nutrients-15-02080" aria-expanded="false">16</a>]. Nevertheless, not all sources of HC have the same efficacy. Even at the same dose and duration of administration, some specific sources of collagens are more effective than others [<a href="#B20-nutrients-15-02080" class="usa-link" aria-describedby="B20-nutrients-15-02080" aria-expanded="false">20</a>]. Therefore, studies are required to determine the proper source and therapeutic duration of HC against skin aging.</p>
<p>Because an increasing number of clinical studies on collagen supplements have been conducted globally, their results must be summarized in a systematic review and meta-analysis. Therefore, this systematic review and meta-analysis investigated the effects of collagen supplementation on skin hydration and elasticity.</p></section><section id="sec2-nutrients-15-02080"><h2 class="pmc_sec_title" data-anchor-id="sec2-nutrients-15-02080"><a id="sec2-nutrients-15-02080-anchor" data-anchor-id="sec2-nutrients-15-02080" class="usa-anchor"></a>2. Materials and Methods</h2>
<section id="sec2dot1-nutrients-15-02080"><h3 class="pmc_sec_title">2.1. Search Strategy, Inclusion Criteria, and Exclusion Criteria</h3>
<p>We performed a literature search in the Embase, PubMed, and Cochrane Library databases by using the following search terms from Medical Subject Headings with no restrictions applied: (collagen OR hydrolyzed collagen) AND (anti-aging). Relevant studies published before December 2022 were identified. We included studies that met the following criteria: (1) applying a randomized clinical trial (RCT) design; (2) including healthy adults (aged ≥ 18 years); (3) including patients who received HC; (4) being full-text articles written in English. We excluded studies that (1) assessed the combined effect of collagen supplement with another supplement or (2) were RCTs that were not written in English. We extracted raw data from the graphs in articles using WebPlotDigitizer [<a href="#B21-nutrients-15-02080" class="usa-link" aria-describedby="B21-nutrients-15-02080" aria-expanded="false">21</a>].</p></section><section id="sec2dot2-nutrients-15-02080"><h3 class="pmc_sec_title">2.2. Data Extraction</h3>
<p>Two independent reviewers (S-YP, CC) extracted the basic information of the included studies. The following types of information were extracted: study meta-data (i.e., first author, publication year, and study design) and information on the study sample (i.e., number of patients, gender, mean age, and baseline characteristics of the treatment and placebo groups), intervention (i.e., the dose of collagen supplement and form), and outcomes (i.e., hydration and elasticity). Continuous outcomes are presented in terms of the mean ± standard deviation (SD), and discrete data are presented in terms of percentage.</p></section><section id="sec2dot3-nutrients-15-02080"><h3 class="pmc_sec_title">2.3. Statistical Analysis, Sensitivity Analysis and Bias Assessment</h3>
<p>We used a random-effects model to calculate the SD and mean difference of the identified studies. A <em>p</em> value of &lt;0.05 indicated statistical significance. The levels of heterogeneity among the included studies were determined using Hedges I<sup>2</sup> tests, and forest plots were generated for each included study. Moreover, I<sup>2</sup> ≥ 50% indicated high heterogeneity [<a href="#B22-nutrients-15-02080" class="usa-link" aria-describedby="B22-nutrients-15-02080" aria-expanded="false">22</a>]. The general effect test result was reported as a z-value, which supported the inference of the 95% confidence interval (CI). A sensitivity analysis was performed to negate the effect of potentially influential studies. Each study was classified in accordance with the Cochrane Handbook for Systematic Reviews of Interventions [<a href="#B23-nutrients-15-02080" class="usa-link" aria-describedby="B23-nutrients-15-02080" aria-expanded="false">23</a>]. The Cochrane risk of bias (RoB) 2.0 tool was used to assess the risk of bias in the included RCTs. Five domains of bias were evaluated (selection, performance, detection, attrition, and reporting bias) [<a href="#B24-nutrients-15-02080" class="usa-link" aria-describedby="B24-nutrients-15-02080" aria-expanded="false">24</a>]. In this meta-analysis, all outcomes were analyzed using RevMan software (version 5.4).</p></section></section><section id="sec3-nutrients-15-02080"><h2 class="pmc_sec_title" data-anchor-id="sec3-nutrients-15-02080"><a id="sec3-nutrients-15-02080-anchor" data-anchor-id="sec3-nutrients-15-02080" class="usa-anchor"></a>3. Results</h2>
<section id="sec3dot1-nutrients-15-02080"><h3 class="pmc_sec_title">3.1. Research Results and Study Characteristics</h3>
<p><a href="#nutrients-15-02080-f001" class="usa-link">Figure 1</a> shows the flowchart of the literature search process performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines [<a href="#B25-nutrients-15-02080" class="usa-link" aria-describedby="B25-nutrients-15-02080" aria-expanded="false">25</a>]. We identified 1135 studies in our initial search. After removing duplicates and screening titles or abstracts of related articles, we assessed the full-text articles of the remaining 37 studies. Of these studies, 26 articles were included in this systematic review and meta-analysis.</p>
<figure class="fig xbox font-sm" id="nutrients-15-02080-f001"><h4 class="obj_head">Figure 1.</h4>
<p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&amp;p=PMC3&amp;id=10180699_nutrients-15-02080-g001.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54a8/10180699/a7bda9a1ca2e/nutrients-15-02080-g001.jpg" loading="lazy" height="797" width="698" alt="Figure 1"></a></p>
<div class="p text-right font-secondary"><a href="figure/nutrients-15-02080-f001/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div>
<figcaption><p>Flowchart of the systematic review and meta-analysis according to the PRISMA guidelines.</p></figcaption></figure></section><section id="sec3dot2-nutrients-15-02080"><h3 class="pmc_sec_title">3.2. Study Characteristics</h3>
<p>A total of 26 RCTs involving 1721 patients were included in this meta-analysis. The duration of the HC supplementation of the included studies ranged from 2 to 12 weeks. Among the included RCTs, 14 focused on collagens extracted from fish, one focused on collagens extracted from bovine, one focused on collagens extracted from chicken, two focused on collagens extracted from porcine, and nine lacked information regarding the source of collagen. The study characteristics of the included RCTs are presented in <a href="#nutrients-15-02080-t001" class="usa-link">Table 1</a>.</p>
<p>The measurement of skin hydration levels is commonly conducted using a non-invasive tool called a corneometer. This instrument emits a high-frequency electric current into the skins surface and measures the amount of water present in the top layer, expressed in corneometry units. The corneometer is widely used in evaluating the effectiveness of topical products and assessing overall skin health by providing valuable insights into the skins moisture barrier. Therefore, it is considered as a valuable tool in measuring the skin hydration levels and assessing the efficacy of skincare products [<a href="#B18-nutrients-15-02080" class="usa-link" aria-describedby="B18-nutrients-15-02080" aria-expanded="false">18</a>,<a href="#B26-nutrients-15-02080" class="usa-link" aria-describedby="B26-nutrients-15-02080" aria-expanded="false">26</a>,<a href="#B27-nutrients-15-02080" class="usa-link" aria-describedby="B27-nutrients-15-02080" aria-expanded="false">27</a>,<a href="#B28-nutrients-15-02080" class="usa-link" aria-describedby="B28-nutrients-15-02080" aria-expanded="false">28</a>,<a href="#B29-nutrients-15-02080" class="usa-link" aria-describedby="B29-nutrients-15-02080" aria-expanded="false">29</a>,<a href="#B30-nutrients-15-02080" class="usa-link" aria-describedby="B30-nutrients-15-02080" aria-expanded="false">30</a>,<a href="#B31-nutrients-15-02080" class="usa-link" aria-describedby="B31-nutrients-15-02080" aria-expanded="false">31</a>,<a href="#B32-nutrients-15-02080" class="usa-link" aria-describedby="B32-nutrients-15-02080" aria-expanded="false">32</a>,<a href="#B33-nutrients-15-02080" class="usa-link" aria-describedby="B33-nutrients-15-02080" aria-expanded="false">33</a>]. On the other hand, the measurement of skin elasticity is often conducted using cutometry, a non-invasive technique that provides valuable insights into skin health. It works by applying a controlled negative pressure to a small area of the skin and measuring the resulting deformation, which is directly proportional to the skins elasticity. Cutometry is widely used in research and clinical settings to assess the skin elasticity levels and monitor changes in the skin over time. Overall, it is a safe and reliable tool for evaluating skin health [<a href="#B18-nutrients-15-02080" class="usa-link" aria-describedby="B18-nutrients-15-02080" aria-expanded="false">18</a>,<a href="#B26-nutrients-15-02080" class="usa-link" aria-describedby="B26-nutrients-15-02080" aria-expanded="false">26</a>,<a href="#B27-nutrients-15-02080" class="usa-link" aria-describedby="B27-nutrients-15-02080" aria-expanded="false">27</a>,<a href="#B29-nutrients-15-02080" class="usa-link" aria-describedby="B29-nutrients-15-02080" aria-expanded="false">29</a>,<a href="#B32-nutrients-15-02080" class="usa-link" aria-describedby="B32-nutrients-15-02080" aria-expanded="false">32</a>,<a href="#B33-nutrients-15-02080" class="usa-link" aria-describedby="B33-nutrients-15-02080" aria-expanded="false">33</a>,<a href="#B34-nutrients-15-02080" class="usa-link" aria-describedby="B34-nutrients-15-02080" aria-expanded="false">34</a>,<a href="#B35-nutrients-15-02080" class="usa-link" aria-describedby="B35-nutrients-15-02080" aria-expanded="false">35</a>,<a href="#B36-nutrients-15-02080" class="usa-link" aria-describedby="B36-nutrients-15-02080" aria-expanded="false">36</a>,<a href="#B37-nutrients-15-02080" class="usa-link" aria-describedby="B37-nutrients-15-02080" aria-expanded="false">37</a>].</p>
<section class="tw xbox font-sm" id="nutrients-15-02080-t001"><h4 class="obj_head">Table 1.</h4>
<div class="caption p"><p>Characteristics of the patients in the included studies.</p></div>
<div class="tbl-box p" tabindex="0"><table class="content" frame="hsides" rules="groups">
<thead><tr>
<th align="left" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Author (Year)</th>
<th align="left" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Female/Male</th>
<th align="left" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Age Range</th>
<th align="left" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Time (Weeks)</th>
<th align="left" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Intervention (Origin)</th>
<th align="left" valign="middle" style="border-top:solid thin;border-bottom:solid thin" rowspan="1" colspan="1">Outcome Extracted</th>
</tr></thead>
<tbody>
<tr>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Proksch et al. (2014a) [<a href="#B18-nutrients-15-02080" class="usa-link" aria-describedby="B18-nutrients-15-02080" aria-expanded="false">18</a>]</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">60/0</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">3555</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">8, 12</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">2.5 g HC/5 g HC (porcine)</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Elasticity/hydration/trans-epidermal water loss (TEWL)/wrinkles</td>
</tr>
<tr>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Proksch et al. (2014b) [<a href="#B38-nutrients-15-02080" class="usa-link" aria-describedby="B38-nutrients-15-02080" aria-expanded="false">38</a>]</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">107/0</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">4565</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">8, 12</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">2.5 g collagen peptides</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Wrinkles/biopsy/procollagen type/elastin/fibrillin</td>
</tr>
<tr>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Yoon et al. (2014) [<a href="#B39-nutrients-15-02080" class="usa-link" aria-describedby="B39-nutrients-15-02080" aria-expanded="false">39</a>]</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">44/0</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">&gt;44</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">12</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">3 g HC (fish)</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Procollagen type 1/fibrillin 1/metalloproteinases 1 and 12/biopsies/immunohistochemical staining</td>
</tr>
<tr>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Di Cerbo et al. (2014) [<a href="#B40-nutrients-15-02080" class="usa-link" aria-describedby="B40-nutrients-15-02080" aria-expanded="false">40</a>]</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">30/0</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">4045</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">4.5</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">372 mg HC</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Cutaneous pH/hydration/sebum/elasticity/skin tone/elastin/elastase 2/fibronectin/hyaluronic acid/carbonyl proteins</td>
</tr>
<tr>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Choi et al. (2014) [<a href="#B32-nutrients-15-02080" class="usa-link" aria-describedby="B32-nutrients-15-02080" aria-expanded="false">32</a>]</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">24/8</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">3048</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">5</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">3 g collagen peptides</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Skin hydration/elasticity/TEWL/erythema/satisfaction questionnaire</td>
</tr>
<tr>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Sugihara, Inoue, and Wang (2015) [<a href="#B28-nutrients-15-02080" class="usa-link" aria-describedby="B28-nutrients-15-02080" aria-expanded="false">28</a>]</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">53/0</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">3555</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">8</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">2.5 g HC (fish)</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Hydration/elasticity/wrinkles</td>
</tr>
<tr>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Campos et al. (2015) [<a href="#B29-nutrients-15-02080" class="usa-link" aria-describedby="B29-nutrients-15-02080" aria-expanded="false">29</a>]</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">60/0</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">4050</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">12</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">10 g HC</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Corneal stratum hydration/skin viscoelasticity/dermal echogenicity/high-resolution photography</td>
</tr>
<tr>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Asserin et al. (2015) [<a href="#B30-nutrients-15-02080" class="usa-link" aria-describedby="B30-nutrients-15-02080" aria-expanded="false">30</a>]</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">134/0</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">4065</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">8, 12</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">10 g HC (porcine)/10 g HC (fish)</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Skin moisture/TEWL/dermal density/dermal echogenicity/dermal collagen fragmentation</td>
</tr>
<tr>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Inoue, Sugihara, and Wang (2016) [<a href="#B34-nutrients-15-02080" class="usa-link" aria-describedby="B34-nutrients-15-02080" aria-expanded="false">34</a>]</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">80/0</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">3555</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">8</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">2.5 g collagen peptides</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Skin moisture/elasticity/wrinkles</td>
</tr>
<tr>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Genovese, Corbo, and Sibilla (2017) [<a href="#B41-nutrients-15-02080" class="usa-link" aria-describedby="B41-nutrients-15-02080" aria-expanded="false">41</a>]</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">111/9</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">4060</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">12</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">5 g HC</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Elasticity/biopsies/subjective questionnaire</td>
</tr>
<tr>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Koizumi et al. (2017) [<a href="#B27-nutrients-15-02080" class="usa-link" aria-describedby="B27-nutrients-15-02080" aria-expanded="false">27</a>]</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">71/0</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">3060</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">12</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">3 g collagen peptides</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Wrinkles/moisture/elasticity/blood tests (γ-glutamyltransferase, mean corpuscular hemoglobin concentration, mean corpuscular hemoglobin, mean corpuscular volume, red blood cell, platelet, white blood cell, bilirubin, creatinine, total cholesterol, glucose, hemoglobin, hematocrit, alanine aminotransferase, aspartate aminotransferase, total protein and albumin)</td>
</tr>
<tr>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Czajka et al. (2018) [<a href="#B42-nutrients-15-02080" class="usa-link" aria-describedby="B42-nutrients-15-02080" aria-expanded="false">42</a>]</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">120/0</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">2170</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">12</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">4 g HC</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Elasticity/biopsies/self-perception questionnaire</td>
</tr>
<tr>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Kim (2018) [<a href="#B43-nutrients-15-02080" class="usa-link" aria-describedby="B43-nutrients-15-02080" aria-expanded="false">43</a>]</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">70/0</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">4060</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">12</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">1000 mg collagen (fish)</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Skin hydration/wrinkling/elasticity</td>
</tr>
<tr>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ito, Seki, and Ueda (2018) [<a href="#B31-nutrients-15-02080" class="usa-link" aria-describedby="B31-nutrients-15-02080" aria-expanded="false">31</a>]</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">17/4</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">3050</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">8</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">10 g collagen peptides (fish)</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Elasticity/moisture/TEWL/skin pH/spots/wrinkle/skin pores/texture/density/collagen score/growth hormone (GH), insulin-like growth factor-1 (IGF-1)</td>
</tr>
<tr>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Bolke et al. (2019) [<a href="#B26-nutrients-15-02080" class="usa-link" aria-describedby="B26-nutrients-15-02080" aria-expanded="false">26</a>]</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">72/0</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">&gt;35</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">12, 16</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">2.5 g collagen peptides</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Hydration/elasticity/wrinkles/skin density/subjective questionnaire </td>
</tr>
<tr>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Schwartz et al. (2019) [<a href="#B35-nutrients-15-02080" class="usa-link" aria-describedby="B35-nutrients-15-02080" aria-expanded="false">35</a>]</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">113/0</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">3659</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">12</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">0.6 g HC (chicken)</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Erythema/hydration/TEWL/elasticity/wrinkles/dermal collagen/subjective questionnaire</td>
</tr>
<tr>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Zmitek et al. (2020) [<a href="#B44-nutrients-15-02080" class="usa-link" aria-describedby="B44-nutrients-15-02080" aria-expanded="false">44</a>]</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">31/0</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">4065</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">12</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">4 g HC (fish)</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Dermal density and thickness/viscoelasticity/hydration/TEWL/wrinkles/moisture/dermal microrelief</td>
</tr>
<tr>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Laing et al. (2020) [<a href="#B45-nutrients-15-02080" class="usa-link" aria-describedby="B45-nutrients-15-02080" aria-expanded="false">45</a>]</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">60/0</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">4070</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">12</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">2.5 g collagen peptides</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Dermal collagen fragmentation/subjective questionnaire</td>
</tr>
<tr>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Sangsuwan and Asawanonda (2020) [<a href="#B37-nutrients-15-02080" class="usa-link" aria-describedby="B37-nutrients-15-02080" aria-expanded="false">37</a>]</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">36/0</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">5060</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">4, 8</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">5 g HC</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Elasticity</td>
</tr>
<tr>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Nomoto and Iizaka (2020) [<a href="#B33-nutrients-15-02080" class="usa-link" aria-describedby="B33-nutrients-15-02080" aria-expanded="false">33</a>]</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">27/12</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">&gt;65</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">8</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">12 g collagen peptides</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Stratum corneum hydration/elasticity</td>
</tr>
<tr>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Ping (2020) [<a href="#B46-nutrients-15-02080" class="usa-link" aria-describedby="B46-nutrients-15-02080" aria-expanded="false">46</a>]</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">50/0</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">3550</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">8</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">5.5 g collagen (fish)</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Skin hydration/brightness/texture/crows feet/collagen content</td>
</tr>
<tr>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Evans (2020) [<a href="#B47-nutrients-15-02080" class="usa-link" aria-describedby="B47-nutrients-15-02080" aria-expanded="false">47</a>]</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">50/0</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">4560</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">12</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">10 g HC (fish)</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Wrinkles/elasticity/self-reported appearance</td>
</tr>
<tr>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Tak (2021) [<a href="#B48-nutrients-15-02080" class="usa-link" aria-describedby="B48-nutrients-15-02080" aria-expanded="false">48</a>]</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">84/0</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">4060</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">12</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">1000 mg collagen tripeptides</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Hydration/elasticity/wrinkles</td>
</tr>
<tr>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Miyanaga (2021) [<a href="#B49-nutrients-15-02080" class="usa-link" aria-describedby="B49-nutrients-15-02080" aria-expanded="false">49</a>]</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">99/0</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">3550</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">12</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">1 g HC/5 g HC</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Skin water content/TEWL/elasticity/thickness</td>
</tr>
<tr>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Jung (2021) [<a href="#B50-nutrients-15-02080" class="usa-link" aria-describedby="B50-nutrients-15-02080" aria-expanded="false">50</a>]</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">25/25</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">3560</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">12</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">1000 mg collagen (fish)</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Skin hydration/TEWL/texture/flexibility</td>
</tr>
<tr>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Bianchi (2022) [<a href="#B51-nutrients-15-02080" class="usa-link" aria-describedby="B51-nutrients-15-02080" aria-expanded="false">51</a>]</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">52/0</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">4060</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">8</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">5 g HC</td>
<td align="left" valign="middle" style="border-bottom:solid thin" rowspan="1" colspan="1">Skin moisturization/elasticity/wrinkle depth</td>
</tr>
</tbody>
</table></div>
<div class="p text-right font-secondary"><a href="table/nutrients-15-02080-t001/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div></section></section><section id="sec3dot3-nutrients-15-02080"><h3 class="pmc_sec_title">3.3. Meta-Analysis Results</h3>
<section id="sec3dot3dot1-nutrients-15-02080"><h4 class="pmc_sec_title">3.3.1. Pooled Analysis of Selected Studies</h4>
<p>Some articles were excluded from the research due to various reasons. Studies conducted by Campos, Czajka, Genovese, and Sangsuwan were not considered as they did not measure the hydration levels, which was a key parameter of interest. Similarly, the Asserin study did not measure elasticity, so its results could not be used to evaluate the impact of elasticity on the outcome measures. The Bianchi and Ping study was excluded due to the lack of standard deviation data for the placebo group, which was necessary for the statistical analysis. The Laing study did not provide sufficient direct data on moisture and elasticity, the primary outcomes of interest, and the provided microscopic observations and questionnaires were insufficient for the research. Finally, the Proksch study did not provide data for the placebo group, making it impossible to compare the results with those of the intervention group. Therefore, these studies did not meet the necessary criteria for inclusion in the research.</p>
<p>All included RCTs divided the patients into two groups according to the collagen measurement and skin hydration or elasticity, and then subjected to a meta-analysis. The standard mean difference (SMD) of 18 studies on the effects of HC and the placebo on skin hydration are shown in <a href="#nutrients-15-02080-f002" class="usa-link">Figure 2</a>. The overall pooled effect size of 0.63 (95% CI 0.38, 0.88) indicated that HC supplementation significantly improved skin hydration (z = 4.94, <em>p</em> &lt; 0.00001). <a href="#nutrients-15-02080-f003" class="usa-link">Figure 3</a> shows the forest plot of the meta-analysis of 19 studies on the effects of HC on skin elasticity; the results indicate that HC supplementation significantly improved skin elasticity (z = 4.49, <em>p</em> &lt; 0.00001) compared with the placebo group at a pooled effect size of 0.72 (95% CI 0.40, 1.03).</p>
<figure class="fig xbox font-sm" id="nutrients-15-02080-f002"><h5 class="obj_head">Figure 2.</h5>
<p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&amp;p=PMC3&amp;id=10180699_nutrients-15-02080-g002.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54a8/10180699/0c1f3b7818c5/nutrients-15-02080-g002.jpg" loading="lazy" height="367" width="748" alt="Figure 2"></a></p>
<div class="p text-right font-secondary"><a href="figure/nutrients-15-02080-f002/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div>
<figcaption><p>Forest plot of the included studies evaluating skin hydration in patients supplemented with HC and patients in the placebo group [<a href="#B26-nutrients-15-02080" class="usa-link" aria-describedby="B26-nutrients-15-02080" aria-expanded="false">26</a>,<a href="#B27-nutrients-15-02080" class="usa-link" aria-describedby="B27-nutrients-15-02080" aria-expanded="false">27</a>,<a href="#B28-nutrients-15-02080" class="usa-link" aria-describedby="B28-nutrients-15-02080" aria-expanded="false">28</a>,<a href="#B30-nutrients-15-02080" class="usa-link" aria-describedby="B30-nutrients-15-02080" aria-expanded="false">30</a>,<a href="#B31-nutrients-15-02080" class="usa-link" aria-describedby="B31-nutrients-15-02080" aria-expanded="false">31</a>,<a href="#B32-nutrients-15-02080" class="usa-link" aria-describedby="B32-nutrients-15-02080" aria-expanded="false">32</a>,<a href="#B33-nutrients-15-02080" class="usa-link" aria-describedby="B33-nutrients-15-02080" aria-expanded="false">33</a>,<a href="#B34-nutrients-15-02080" class="usa-link" aria-describedby="B34-nutrients-15-02080" aria-expanded="false">34</a>,<a href="#B35-nutrients-15-02080" class="usa-link" aria-describedby="B35-nutrients-15-02080" aria-expanded="false">35</a>,<a href="#B39-nutrients-15-02080" class="usa-link" aria-describedby="B39-nutrients-15-02080" aria-expanded="false">39</a>,<a href="#B40-nutrients-15-02080" class="usa-link" aria-describedby="B40-nutrients-15-02080" aria-expanded="false">40</a>,<a href="#B43-nutrients-15-02080" class="usa-link" aria-describedby="B43-nutrients-15-02080" aria-expanded="false">43</a>,<a href="#B44-nutrients-15-02080" class="usa-link" aria-describedby="B44-nutrients-15-02080" aria-expanded="false">44</a>,<a href="#B46-nutrients-15-02080" class="usa-link" aria-describedby="B46-nutrients-15-02080" aria-expanded="false">46</a>,<a href="#B47-nutrients-15-02080" class="usa-link" aria-describedby="B47-nutrients-15-02080" aria-expanded="false">47</a>,<a href="#B48-nutrients-15-02080" class="usa-link" aria-describedby="B48-nutrients-15-02080" aria-expanded="false">48</a>,<a href="#B49-nutrients-15-02080" class="usa-link" aria-describedby="B49-nutrients-15-02080" aria-expanded="false">49</a>,<a href="#B50-nutrients-15-02080" class="usa-link" aria-describedby="B50-nutrients-15-02080" aria-expanded="false">50</a>]. (HC: hydrolyzed collagen, CI: confidence intervals, SD: standard deviation, I<sup>2</sup>: heterogeneity).</p></figcaption></figure><figure class="fig xbox font-sm" id="nutrients-15-02080-f003"><h5 class="obj_head">Figure 3.</h5>
<p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&amp;p=PMC3&amp;id=10180699_nutrients-15-02080-g003.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54a8/10180699/1e3174e962d1/nutrients-15-02080-g003.jpg" loading="lazy" height="393" width="769" alt="Figure 3"></a></p>
<div class="p text-right font-secondary"><a href="figure/nutrients-15-02080-f003/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div>
<figcaption><p>Forest plot of the included studies evaluating skin elasticity in patients supplemented with HC and patients in the placebo group [<a href="#B26-nutrients-15-02080" class="usa-link" aria-describedby="B26-nutrients-15-02080" aria-expanded="false">26</a>,<a href="#B27-nutrients-15-02080" class="usa-link" aria-describedby="B27-nutrients-15-02080" aria-expanded="false">27</a>,<a href="#B28-nutrients-15-02080" class="usa-link" aria-describedby="B28-nutrients-15-02080" aria-expanded="false">28</a>,<a href="#B29-nutrients-15-02080" class="usa-link" aria-describedby="B29-nutrients-15-02080" aria-expanded="false">29</a>,<a href="#B31-nutrients-15-02080" class="usa-link" aria-describedby="B31-nutrients-15-02080" aria-expanded="false">31</a>,<a href="#B32-nutrients-15-02080" class="usa-link" aria-describedby="B32-nutrients-15-02080" aria-expanded="false">32</a>,<a href="#B33-nutrients-15-02080" class="usa-link" aria-describedby="B33-nutrients-15-02080" aria-expanded="false">33</a>,<a href="#B34-nutrients-15-02080" class="usa-link" aria-describedby="B34-nutrients-15-02080" aria-expanded="false">34</a>,<a href="#B35-nutrients-15-02080" class="usa-link" aria-describedby="B35-nutrients-15-02080" aria-expanded="false">35</a>,<a href="#B37-nutrients-15-02080" class="usa-link" aria-describedby="B37-nutrients-15-02080" aria-expanded="false">37</a>,<a href="#B39-nutrients-15-02080" class="usa-link" aria-describedby="B39-nutrients-15-02080" aria-expanded="false">39</a>,<a href="#B40-nutrients-15-02080" class="usa-link" aria-describedby="B40-nutrients-15-02080" aria-expanded="false">40</a>,<a href="#B41-nutrients-15-02080" class="usa-link" aria-describedby="B41-nutrients-15-02080" aria-expanded="false">41</a>,<a href="#B42-nutrients-15-02080" class="usa-link" aria-describedby="B42-nutrients-15-02080" aria-expanded="false">42</a>,<a href="#B43-nutrients-15-02080" class="usa-link" aria-describedby="B43-nutrients-15-02080" aria-expanded="false">43</a>,<a href="#B44-nutrients-15-02080" class="usa-link" aria-describedby="B44-nutrients-15-02080" aria-expanded="false">44</a>,<a href="#B47-nutrients-15-02080" class="usa-link" aria-describedby="B47-nutrients-15-02080" aria-expanded="false">47</a>,<a href="#B48-nutrients-15-02080" class="usa-link" aria-describedby="B48-nutrients-15-02080" aria-expanded="false">48</a>,<a href="#B49-nutrients-15-02080" class="usa-link" aria-describedby="B49-nutrients-15-02080" aria-expanded="false">49</a>]. (HC: hydrolyzed collagen, CI: confidence intervals, SD: standard deviation, I<sup>2</sup>: heterogeneity).</p></figcaption></figure></section><section id="sec3dot3dot2-nutrients-15-02080"><h4 class="pmc_sec_title">3.3.2. Subgroup Analysis</h4>
<p>Collagen supplements are available in various forms including gels, liquids, and capsules. The type of collagen used in these supplements can vary depending on the source, with some of the most common types including fish, porcine, chicken, and bovine collagen. A subgroup analysis was performed to determine the effects of multiple sources of HC supplements and duration on skin hydration. The results showed that the supplementation with HC originating from fish, bovine, chicken, porcine, and unknown source significantly improved skin hydration (<a href="#nutrients-15-02080-f004" class="usa-link">Figure 4</a>, <em>p</em> &lt; 0.00001). Of these sources, HC originating from chicken had the weakest effect (0.03, 95% CI 0.40, 0.34) on skin hydration. In addition, we performed subgroup analyses on the duration of HC supplementation for 2, 4, 6, 8, and 12 weeks. The forest plot analysis revealed that the effects of HC supplementation during 4 (<em>p</em> = 0.002), 6 (<em>p</em> = 0.04), 8 (<em>p</em> &lt; 0.00001), and 12 weeks (<em>p</em> = 0.001) significantly differed, as shown in <a href="#nutrients-15-02080-f005" class="usa-link">Figure 5</a>. In addition, the effects of the long-term use (&gt;8 weeks) of HC (0.59, 95% CI 0.35, 0.83) were more favorable than that of the short-term use (&lt;8 weeks) of HC (0.39, 95% CI 0.15, 0.63, <a href="#nutrients-15-02080-f006" class="usa-link">Figure 6</a>).</p>
<figure class="fig xbox font-sm" id="nutrients-15-02080-f004"><h5 class="obj_head">Figure 4.</h5>
<p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&amp;p=PMC3&amp;id=10180699_nutrients-15-02080-g004.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54a8/10180699/f2c4eb0ae597/nutrients-15-02080-g004.jpg" loading="lazy" height="716" width="754" alt="Figure 4"></a></p>
<div class="p text-right font-secondary"><a href="figure/nutrients-15-02080-f004/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div>
<figcaption><p>Forest plot for the subgroup analysis of skin hydration expressed as HC originating from fish, bovine, chicken, porcine, and unknown source in patients supplemented with HC and patients in the placebo group [<a href="#B26-nutrients-15-02080" class="usa-link" aria-describedby="B26-nutrients-15-02080" aria-expanded="false">26</a>,<a href="#B27-nutrients-15-02080" class="usa-link" aria-describedby="B27-nutrients-15-02080" aria-expanded="false">27</a>,<a href="#B28-nutrients-15-02080" class="usa-link" aria-describedby="B28-nutrients-15-02080" aria-expanded="false">28</a>,<a href="#B30-nutrients-15-02080" class="usa-link" aria-describedby="B30-nutrients-15-02080" aria-expanded="false">30</a>,<a href="#B31-nutrients-15-02080" class="usa-link" aria-describedby="B31-nutrients-15-02080" aria-expanded="false">31</a>,<a href="#B32-nutrients-15-02080" class="usa-link" aria-describedby="B32-nutrients-15-02080" aria-expanded="false">32</a>,<a href="#B33-nutrients-15-02080" class="usa-link" aria-describedby="B33-nutrients-15-02080" aria-expanded="false">33</a>,<a href="#B34-nutrients-15-02080" class="usa-link" aria-describedby="B34-nutrients-15-02080" aria-expanded="false">34</a>,<a href="#B35-nutrients-15-02080" class="usa-link" aria-describedby="B35-nutrients-15-02080" aria-expanded="false">35</a>,<a href="#B40-nutrients-15-02080" class="usa-link" aria-describedby="B40-nutrients-15-02080" aria-expanded="false">40</a>,<a href="#B43-nutrients-15-02080" class="usa-link" aria-describedby="B43-nutrients-15-02080" aria-expanded="false">43</a>,<a href="#B44-nutrients-15-02080" class="usa-link" aria-describedby="B44-nutrients-15-02080" aria-expanded="false">44</a>,<a href="#B46-nutrients-15-02080" class="usa-link" aria-describedby="B46-nutrients-15-02080" aria-expanded="false">46</a>,<a href="#B47-nutrients-15-02080" class="usa-link" aria-describedby="B47-nutrients-15-02080" aria-expanded="false">47</a>,<a href="#B48-nutrients-15-02080" class="usa-link" aria-describedby="B48-nutrients-15-02080" aria-expanded="false">48</a>,<a href="#B49-nutrients-15-02080" class="usa-link" aria-describedby="B49-nutrients-15-02080" aria-expanded="false">49</a>,<a href="#B50-nutrients-15-02080" class="usa-link" aria-describedby="B50-nutrients-15-02080" aria-expanded="false">50</a>]. (HC: hydrolyzed collagen, CI: confidence intervals, SD: standard deviation, I<sup>2</sup>: heterogeneity).</p></figcaption></figure><figure class="fig xbox font-sm" id="nutrients-15-02080-f005"><h5 class="obj_head">Figure 5.</h5>
<p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&amp;p=PMC3&amp;id=10180699_nutrients-15-02080-g005.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54a8/10180699/9c2cc99c9782/nutrients-15-02080-g005.jpg" loading="lazy" height="768" width="767" alt="Figure 5"></a></p>
<div class="p text-right font-secondary"><a href="figure/nutrients-15-02080-f005/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div>
<figcaption><p>Forest plot for the subgroup analysis of skin hydration expressed as 2, 4, 6, 8, and 12 weeks in patients supplemented with HC and patients in the placebo group [<a href="#B26-nutrients-15-02080" class="usa-link" aria-describedby="B26-nutrients-15-02080" aria-expanded="false">26</a>,<a href="#B27-nutrients-15-02080" class="usa-link" aria-describedby="B27-nutrients-15-02080" aria-expanded="false">27</a>,<a href="#B28-nutrients-15-02080" class="usa-link" aria-describedby="B28-nutrients-15-02080" aria-expanded="false">28</a>,<a href="#B29-nutrients-15-02080" class="usa-link" aria-describedby="B29-nutrients-15-02080" aria-expanded="false">29</a>,<a href="#B30-nutrients-15-02080" class="usa-link" aria-describedby="B30-nutrients-15-02080" aria-expanded="false">30</a>,<a href="#B31-nutrients-15-02080" class="usa-link" aria-describedby="B31-nutrients-15-02080" aria-expanded="false">31</a>,<a href="#B32-nutrients-15-02080" class="usa-link" aria-describedby="B32-nutrients-15-02080" aria-expanded="false">32</a>,<a href="#B33-nutrients-15-02080" class="usa-link" aria-describedby="B33-nutrients-15-02080" aria-expanded="false">33</a>,<a href="#B34-nutrients-15-02080" class="usa-link" aria-describedby="B34-nutrients-15-02080" aria-expanded="false">34</a>,<a href="#B35-nutrients-15-02080" class="usa-link" aria-describedby="B35-nutrients-15-02080" aria-expanded="false">35</a>,<a href="#B39-nutrients-15-02080" class="usa-link" aria-describedby="B39-nutrients-15-02080" aria-expanded="false">39</a>,<a href="#B40-nutrients-15-02080" class="usa-link" aria-describedby="B40-nutrients-15-02080" aria-expanded="false">40</a>,<a href="#B43-nutrients-15-02080" class="usa-link" aria-describedby="B43-nutrients-15-02080" aria-expanded="false">43</a>,<a href="#B44-nutrients-15-02080" class="usa-link" aria-describedby="B44-nutrients-15-02080" aria-expanded="false">44</a>,<a href="#B46-nutrients-15-02080" class="usa-link" aria-describedby="B46-nutrients-15-02080" aria-expanded="false">46</a>,<a href="#B47-nutrients-15-02080" class="usa-link" aria-describedby="B47-nutrients-15-02080" aria-expanded="false">47</a>,<a href="#B48-nutrients-15-02080" class="usa-link" aria-describedby="B48-nutrients-15-02080" aria-expanded="false">48</a>,<a href="#B49-nutrients-15-02080" class="usa-link" aria-describedby="B49-nutrients-15-02080" aria-expanded="false">49</a>,<a href="#B50-nutrients-15-02080" class="usa-link" aria-describedby="B50-nutrients-15-02080" aria-expanded="false">50</a>]. (HC: hydrolyzed collagen, CI: confidence intervals, SD: standard deviation, I<sup>2</sup>: heterogeneity).</p></figcaption></figure><figure class="fig xbox font-sm" id="nutrients-15-02080-f006"><h5 class="obj_head">Figure 6.</h5>
<p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&amp;p=PMC3&amp;id=10180699_nutrients-15-02080-g006.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54a8/10180699/93b65c321603/nutrients-15-02080-g006.jpg" loading="lazy" height="671" width="742" alt="Figure 6"></a></p>
<div class="p text-right font-secondary"><a href="figure/nutrients-15-02080-f006/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div>
<figcaption><p>Forest plot for the subgroup analysis of skin hydration expressed as long-term (&gt;8 weeks) and short-term (&lt;8 weeks) in patients supplemented with HC and patients in the placebo group [<a href="#B26-nutrients-15-02080" class="usa-link" aria-describedby="B26-nutrients-15-02080" aria-expanded="false">26</a>,<a href="#B27-nutrients-15-02080" class="usa-link" aria-describedby="B27-nutrients-15-02080" aria-expanded="false">27</a>,<a href="#B28-nutrients-15-02080" class="usa-link" aria-describedby="B28-nutrients-15-02080" aria-expanded="false">28</a>,<a href="#B30-nutrients-15-02080" class="usa-link" aria-describedby="B30-nutrients-15-02080" aria-expanded="false">30</a>,<a href="#B31-nutrients-15-02080" class="usa-link" aria-describedby="B31-nutrients-15-02080" aria-expanded="false">31</a>,<a href="#B32-nutrients-15-02080" class="usa-link" aria-describedby="B32-nutrients-15-02080" aria-expanded="false">32</a>,<a href="#B33-nutrients-15-02080" class="usa-link" aria-describedby="B33-nutrients-15-02080" aria-expanded="false">33</a>,<a href="#B34-nutrients-15-02080" class="usa-link" aria-describedby="B34-nutrients-15-02080" aria-expanded="false">34</a>,<a href="#B35-nutrients-15-02080" class="usa-link" aria-describedby="B35-nutrients-15-02080" aria-expanded="false">35</a>,<a href="#B39-nutrients-15-02080" class="usa-link" aria-describedby="B39-nutrients-15-02080" aria-expanded="false">39</a>,<a href="#B40-nutrients-15-02080" class="usa-link" aria-describedby="B40-nutrients-15-02080" aria-expanded="false">40</a>,<a href="#B43-nutrients-15-02080" class="usa-link" aria-describedby="B43-nutrients-15-02080" aria-expanded="false">43</a>,<a href="#B44-nutrients-15-02080" class="usa-link" aria-describedby="B44-nutrients-15-02080" aria-expanded="false">44</a>,<a href="#B46-nutrients-15-02080" class="usa-link" aria-describedby="B46-nutrients-15-02080" aria-expanded="false">46</a>,<a href="#B47-nutrients-15-02080" class="usa-link" aria-describedby="B47-nutrients-15-02080" aria-expanded="false">47</a>,<a href="#B48-nutrients-15-02080" class="usa-link" aria-describedby="B48-nutrients-15-02080" aria-expanded="false">48</a>,<a href="#B49-nutrients-15-02080" class="usa-link" aria-describedby="B49-nutrients-15-02080" aria-expanded="false">49</a>,<a href="#B50-nutrients-15-02080" class="usa-link" aria-describedby="B50-nutrients-15-02080" aria-expanded="false">50</a>]. (HC: hydrolyzed collagen, CI: confidence intervals, SD: standard deviation, I<sup>2</sup>: heterogeneity).</p></figcaption></figure><p>In addition, three subgroup analyses of the effects of sources of HC, corresponding measurements (R2: Gross elasticity, R5: Net elasticity; elastic portion of relaxation/elastic portion of suction, R7: Elastic portion; elastic portion of relaxation/first maximum amplitude after suction and mm by cutometer) and the duration of HC supplementation on skin elasticity were performed. The subgroup analyses indicated no significant differences in the effects of various sources of HC (<em>p</em> = 0.21, <a href="#nutrients-15-02080-f007" class="usa-link">Figure 7</a>) and the corresponding measurements (<em>p</em> = 0.06, <a href="#nutrients-15-02080-f008" class="usa-link">Figure 8</a>) on skin elasticity. The subgroup analysis on the duration revealed that 6 weeks of HC supplementation showed no positive effect on skin elasticity (<em>p</em> = 0.05, <a href="#nutrients-15-02080-f009" class="usa-link">Figure 9</a>). Furthermore, the effect of the long-term use (&gt;8 weeks) of HC (0.73, 95% CI 0.41, 1.06) was more favorable than that of the short-term use (&lt;8 weeks) of HC (0.67, 95% CI 0.33, 1.00) on skin elasticity. The results of the subgroup analyses are presented in <a href="#nutrients-15-02080-f010" class="usa-link">Figure 10</a>.</p>
<figure class="fig xbox font-sm" id="nutrients-15-02080-f007"><h5 class="obj_head">Figure 7.</h5>
<p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&amp;p=PMC3&amp;id=10180699_nutrients-15-02080-g007.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54a8/10180699/f56aea008fb1/nutrients-15-02080-g007.jpg" loading="lazy" height="655" width="734" alt="Figure 7"></a></p>
<div class="p text-right font-secondary"><a href="figure/nutrients-15-02080-f007/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div>
<figcaption><p>Forest plot for the subgroup analysis of skin elasticity expressed as HC originating from fish, bovine, chicken, porcine, and unknown source in patients supplemented with HC and patients in the placebo group [<a href="#B26-nutrients-15-02080" class="usa-link" aria-describedby="B26-nutrients-15-02080" aria-expanded="false">26</a>,<a href="#B27-nutrients-15-02080" class="usa-link" aria-describedby="B27-nutrients-15-02080" aria-expanded="false">27</a>,<a href="#B28-nutrients-15-02080" class="usa-link" aria-describedby="B28-nutrients-15-02080" aria-expanded="false">28</a>,<a href="#B29-nutrients-15-02080" class="usa-link" aria-describedby="B29-nutrients-15-02080" aria-expanded="false">29</a>,<a href="#B31-nutrients-15-02080" class="usa-link" aria-describedby="B31-nutrients-15-02080" aria-expanded="false">31</a>,<a href="#B32-nutrients-15-02080" class="usa-link" aria-describedby="B32-nutrients-15-02080" aria-expanded="false">32</a>,<a href="#B33-nutrients-15-02080" class="usa-link" aria-describedby="B33-nutrients-15-02080" aria-expanded="false">33</a>,<a href="#B34-nutrients-15-02080" class="usa-link" aria-describedby="B34-nutrients-15-02080" aria-expanded="false">34</a>,<a href="#B35-nutrients-15-02080" class="usa-link" aria-describedby="B35-nutrients-15-02080" aria-expanded="false">35</a>,<a href="#B37-nutrients-15-02080" class="usa-link" aria-describedby="B37-nutrients-15-02080" aria-expanded="false">37</a>,<a href="#B39-nutrients-15-02080" class="usa-link" aria-describedby="B39-nutrients-15-02080" aria-expanded="false">39</a>,<a href="#B40-nutrients-15-02080" class="usa-link" aria-describedby="B40-nutrients-15-02080" aria-expanded="false">40</a>,<a href="#B41-nutrients-15-02080" class="usa-link" aria-describedby="B41-nutrients-15-02080" aria-expanded="false">41</a>,<a href="#B42-nutrients-15-02080" class="usa-link" aria-describedby="B42-nutrients-15-02080" aria-expanded="false">42</a>,<a href="#B43-nutrients-15-02080" class="usa-link" aria-describedby="B43-nutrients-15-02080" aria-expanded="false">43</a>,<a href="#B44-nutrients-15-02080" class="usa-link" aria-describedby="B44-nutrients-15-02080" aria-expanded="false">44</a>,<a href="#B47-nutrients-15-02080" class="usa-link" aria-describedby="B47-nutrients-15-02080" aria-expanded="false">47</a>,<a href="#B48-nutrients-15-02080" class="usa-link" aria-describedby="B48-nutrients-15-02080" aria-expanded="false">48</a>,<a href="#B49-nutrients-15-02080" class="usa-link" aria-describedby="B49-nutrients-15-02080" aria-expanded="false">49</a>]. (HC: hydrolyzed collagen, CI: confidence intervals, SD: standard deviation, I<sup>2</sup>: heterogeneity).</p></figcaption></figure><figure class="fig xbox font-sm" id="nutrients-15-02080-f008"><h5 class="obj_head">Figure 8.</h5>
<p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&amp;p=PMC3&amp;id=10180699_nutrients-15-02080-g008.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54a8/10180699/42659bb187b4/nutrients-15-02080-g008.jpg" loading="lazy" height="627" width="742" alt="Figure 8"></a></p>
<div class="p text-right font-secondary"><a href="figure/nutrients-15-02080-f008/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div>
<figcaption><p>Forest plot for the subgroup analysis of skin elasticity expressed as R2 (Gross elasticity), R5 (Net elasticity; elastic portion of relaxation/elastic portion of suction), R7 (Elastic portion; elastic portion of relaxation/first maximum amplitude after suction), and mm in patients supplemented with hydrolyzed collagen (HC) and patients in the placebo group [<a href="#B26-nutrients-15-02080" class="usa-link" aria-describedby="B26-nutrients-15-02080" aria-expanded="false">26</a>,<a href="#B28-nutrients-15-02080" class="usa-link" aria-describedby="B28-nutrients-15-02080" aria-expanded="false">28</a>,<a href="#B29-nutrients-15-02080" class="usa-link" aria-describedby="B29-nutrients-15-02080" aria-expanded="false">29</a>,<a href="#B31-nutrients-15-02080" class="usa-link" aria-describedby="B31-nutrients-15-02080" aria-expanded="false">31</a>,<a href="#B33-nutrients-15-02080" class="usa-link" aria-describedby="B33-nutrients-15-02080" aria-expanded="false">33</a>,<a href="#B34-nutrients-15-02080" class="usa-link" aria-describedby="B34-nutrients-15-02080" aria-expanded="false">34</a>,<a href="#B35-nutrients-15-02080" class="usa-link" aria-describedby="B35-nutrients-15-02080" aria-expanded="false">35</a>,<a href="#B37-nutrients-15-02080" class="usa-link" aria-describedby="B37-nutrients-15-02080" aria-expanded="false">37</a>,<a href="#B39-nutrients-15-02080" class="usa-link" aria-describedby="B39-nutrients-15-02080" aria-expanded="false">39</a>,<a href="#B41-nutrients-15-02080" class="usa-link" aria-describedby="B41-nutrients-15-02080" aria-expanded="false">41</a>,<a href="#B43-nutrients-15-02080" class="usa-link" aria-describedby="B43-nutrients-15-02080" aria-expanded="false">43</a>,<a href="#B48-nutrients-15-02080" class="usa-link" aria-describedby="B48-nutrients-15-02080" aria-expanded="false">48</a>,<a href="#B49-nutrients-15-02080" class="usa-link" aria-describedby="B49-nutrients-15-02080" aria-expanded="false">49</a>]. (HC: hydrolyzed collagen, CI: confidence intervals, SD: standard deviation, I<sup>2</sup>: heterogeneity).</p></figcaption></figure><figure class="fig xbox font-sm" id="nutrients-15-02080-f009"><h5 class="obj_head">Figure 9.</h5>
<p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&amp;p=PMC3&amp;id=10180699_nutrients-15-02080-g009.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54a8/10180699/fec68d03c137/nutrients-15-02080-g009.jpg" loading="lazy" height="1027" width="790" alt="Figure 9"></a></p>
<div class="p text-right font-secondary"><a href="figure/nutrients-15-02080-f009/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div>
<figcaption><p>Forest plot for the subgroup analysis of skin elasticity expressed as 2, 4, 6, 8, and 12 weeks in patients supplemented with HC and patients in the placebo group [<a href="#B26-nutrients-15-02080" class="usa-link" aria-describedby="B26-nutrients-15-02080" aria-expanded="false">26</a>,<a href="#B27-nutrients-15-02080" class="usa-link" aria-describedby="B27-nutrients-15-02080" aria-expanded="false">27</a>,<a href="#B28-nutrients-15-02080" class="usa-link" aria-describedby="B28-nutrients-15-02080" aria-expanded="false">28</a>,<a href="#B29-nutrients-15-02080" class="usa-link" aria-describedby="B29-nutrients-15-02080" aria-expanded="false">29</a>,<a href="#B31-nutrients-15-02080" class="usa-link" aria-describedby="B31-nutrients-15-02080" aria-expanded="false">31</a>,<a href="#B32-nutrients-15-02080" class="usa-link" aria-describedby="B32-nutrients-15-02080" aria-expanded="false">32</a>,<a href="#B33-nutrients-15-02080" class="usa-link" aria-describedby="B33-nutrients-15-02080" aria-expanded="false">33</a>,<a href="#B34-nutrients-15-02080" class="usa-link" aria-describedby="B34-nutrients-15-02080" aria-expanded="false">34</a>,<a href="#B35-nutrients-15-02080" class="usa-link" aria-describedby="B35-nutrients-15-02080" aria-expanded="false">35</a>,<a href="#B37-nutrients-15-02080" class="usa-link" aria-describedby="B37-nutrients-15-02080" aria-expanded="false">37</a>,<a href="#B39-nutrients-15-02080" class="usa-link" aria-describedby="B39-nutrients-15-02080" aria-expanded="false">39</a>,<a href="#B40-nutrients-15-02080" class="usa-link" aria-describedby="B40-nutrients-15-02080" aria-expanded="false">40</a>,<a href="#B41-nutrients-15-02080" class="usa-link" aria-describedby="B41-nutrients-15-02080" aria-expanded="false">41</a>,<a href="#B42-nutrients-15-02080" class="usa-link" aria-describedby="B42-nutrients-15-02080" aria-expanded="false">42</a>,<a href="#B43-nutrients-15-02080" class="usa-link" aria-describedby="B43-nutrients-15-02080" aria-expanded="false">43</a>,<a href="#B44-nutrients-15-02080" class="usa-link" aria-describedby="B44-nutrients-15-02080" aria-expanded="false">44</a>,<a href="#B47-nutrients-15-02080" class="usa-link" aria-describedby="B47-nutrients-15-02080" aria-expanded="false">47</a>,<a href="#B48-nutrients-15-02080" class="usa-link" aria-describedby="B48-nutrients-15-02080" aria-expanded="false">48</a>,<a href="#B49-nutrients-15-02080" class="usa-link" aria-describedby="B49-nutrients-15-02080" aria-expanded="false">49</a>]. (HC: hydrolyzed collagen, CI: confidence intervals, SD: standard deviation, I<sup>2</sup>: heterogeneity).</p></figcaption></figure><figure class="fig xbox font-sm" id="nutrients-15-02080-f010"><h5 class="obj_head">Figure 10.</h5>
<p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&amp;p=PMC3&amp;id=10180699_nutrients-15-02080-g010.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54a8/10180699/a8c1ddeb176c/nutrients-15-02080-g010.jpg" loading="lazy" height="690" width="730" alt="Figure 10"></a></p>
<div class="p text-right font-secondary"><a href="figure/nutrients-15-02080-f010/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div>
<figcaption><p>Forest plot for the subgroup analysis of skin elasticity expressed as long-term (&gt;8 weeks) and short-term (&lt;8 weeks) in patients supplemented with HC and patients in the placebo group [<a href="#B26-nutrients-15-02080" class="usa-link" aria-describedby="B26-nutrients-15-02080" aria-expanded="false">26</a>,<a href="#B27-nutrients-15-02080" class="usa-link" aria-describedby="B27-nutrients-15-02080" aria-expanded="false">27</a>,<a href="#B28-nutrients-15-02080" class="usa-link" aria-describedby="B28-nutrients-15-02080" aria-expanded="false">28</a>,<a href="#B29-nutrients-15-02080" class="usa-link" aria-describedby="B29-nutrients-15-02080" aria-expanded="false">29</a>,<a href="#B31-nutrients-15-02080" class="usa-link" aria-describedby="B31-nutrients-15-02080" aria-expanded="false">31</a>,<a href="#B32-nutrients-15-02080" class="usa-link" aria-describedby="B32-nutrients-15-02080" aria-expanded="false">32</a>,<a href="#B33-nutrients-15-02080" class="usa-link" aria-describedby="B33-nutrients-15-02080" aria-expanded="false">33</a>,<a href="#B34-nutrients-15-02080" class="usa-link" aria-describedby="B34-nutrients-15-02080" aria-expanded="false">34</a>,<a href="#B35-nutrients-15-02080" class="usa-link" aria-describedby="B35-nutrients-15-02080" aria-expanded="false">35</a>,<a href="#B37-nutrients-15-02080" class="usa-link" aria-describedby="B37-nutrients-15-02080" aria-expanded="false">37</a>,<a href="#B39-nutrients-15-02080" class="usa-link" aria-describedby="B39-nutrients-15-02080" aria-expanded="false">39</a>,<a href="#B40-nutrients-15-02080" class="usa-link" aria-describedby="B40-nutrients-15-02080" aria-expanded="false">40</a>,<a href="#B41-nutrients-15-02080" class="usa-link" aria-describedby="B41-nutrients-15-02080" aria-expanded="false">41</a>,<a href="#B42-nutrients-15-02080" class="usa-link" aria-describedby="B42-nutrients-15-02080" aria-expanded="false">42</a>,<a href="#B43-nutrients-15-02080" class="usa-link" aria-describedby="B43-nutrients-15-02080" aria-expanded="false">43</a>,<a href="#B44-nutrients-15-02080" class="usa-link" aria-describedby="B44-nutrients-15-02080" aria-expanded="false">44</a>,<a href="#B47-nutrients-15-02080" class="usa-link" aria-describedby="B47-nutrients-15-02080" aria-expanded="false">47</a>,<a href="#B48-nutrients-15-02080" class="usa-link" aria-describedby="B48-nutrients-15-02080" aria-expanded="false">48</a>,<a href="#B49-nutrients-15-02080" class="usa-link" aria-describedby="B49-nutrients-15-02080" aria-expanded="false">49</a>]. (HC: hydrolyzed collagen, CI: confidence intervals, SD: standard deviation, I<sup>2</sup>: heterogeneity).</p></figcaption></figure></section></section><section id="sec3dot4-nutrients-15-02080"><h3 class="pmc_sec_title">3.4. Bias</h3>
<p>In conducting systematic reviews and meta-analyses, it is important to examine the quality of research studies and potential biases. One common method for assessing bias is through the use of RoB (Risk of Bias). RoB evaluates various aspects of a study that could lead to bias such as incomplete outcome data and selective outcome reporting. Each aspect is evaluated based on predefined criteria, and an overall assessment of the studys risk of bias is made. The goal of RoB is to provide an impartial evaluation of the studys design, implementation, and reporting to aid in determining the studys reliability and suitability for inclusion in systematic reviews or meta-analyses [<a href="#B24-nutrients-15-02080" class="usa-link" aria-describedby="B24-nutrients-15-02080" aria-expanded="false">24</a>]. At the study level, we found an RoB in the bias arising from the randomization process in one study [<a href="#B33-nutrients-15-02080" class="usa-link" aria-describedby="B33-nutrients-15-02080" aria-expanded="false">33</a>], bias due to deviations from intended intervention in seven studies [<a href="#B27-nutrients-15-02080" class="usa-link" aria-describedby="B27-nutrients-15-02080" aria-expanded="false">27</a>,<a href="#B30-nutrients-15-02080" class="usa-link" aria-describedby="B30-nutrients-15-02080" aria-expanded="false">30</a>,<a href="#B31-nutrients-15-02080" class="usa-link" aria-describedby="B31-nutrients-15-02080" aria-expanded="false">31</a>,<a href="#B33-nutrients-15-02080" class="usa-link" aria-describedby="B33-nutrients-15-02080" aria-expanded="false">33</a>,<a href="#B35-nutrients-15-02080" class="usa-link" aria-describedby="B35-nutrients-15-02080" aria-expanded="false">35</a>,<a href="#B44-nutrients-15-02080" class="usa-link" aria-describedby="B44-nutrients-15-02080" aria-expanded="false">44</a>,<a href="#B48-nutrients-15-02080" class="usa-link" aria-describedby="B48-nutrients-15-02080" aria-expanded="false">48</a>], bias due to missing outcome data in thirteen studies [<a href="#B18-nutrients-15-02080" class="usa-link" aria-describedby="B18-nutrients-15-02080" aria-expanded="false">18</a>,<a href="#B27-nutrients-15-02080" class="usa-link" aria-describedby="B27-nutrients-15-02080" aria-expanded="false">27</a>,<a href="#B28-nutrients-15-02080" class="usa-link" aria-describedby="B28-nutrients-15-02080" aria-expanded="false">28</a>,<a href="#B30-nutrients-15-02080" class="usa-link" aria-describedby="B30-nutrients-15-02080" aria-expanded="false">30</a>,<a href="#B31-nutrients-15-02080" class="usa-link" aria-describedby="B31-nutrients-15-02080" aria-expanded="false">31</a>,<a href="#B33-nutrients-15-02080" class="usa-link" aria-describedby="B33-nutrients-15-02080" aria-expanded="false">33</a>,<a href="#B34-nutrients-15-02080" class="usa-link" aria-describedby="B34-nutrients-15-02080" aria-expanded="false">34</a>,<a href="#B35-nutrients-15-02080" class="usa-link" aria-describedby="B35-nutrients-15-02080" aria-expanded="false">35</a>,<a href="#B37-nutrients-15-02080" class="usa-link" aria-describedby="B37-nutrients-15-02080" aria-expanded="false">37</a>,<a href="#B44-nutrients-15-02080" class="usa-link" aria-describedby="B44-nutrients-15-02080" aria-expanded="false">44</a>,<a href="#B47-nutrients-15-02080" class="usa-link" aria-describedby="B47-nutrients-15-02080" aria-expanded="false">47</a>,<a href="#B48-nutrients-15-02080" class="usa-link" aria-describedby="B48-nutrients-15-02080" aria-expanded="false">48</a>,<a href="#B51-nutrients-15-02080" class="usa-link" aria-describedby="B51-nutrients-15-02080" aria-expanded="false">51</a>], and bias in the selection of the reported results in two studies [<a href="#B18-nutrients-15-02080" class="usa-link" aria-describedby="B18-nutrients-15-02080" aria-expanded="false">18</a>,<a href="#B51-nutrients-15-02080" class="usa-link" aria-describedby="B51-nutrients-15-02080" aria-expanded="false">51</a>]. <a href="#nutrients-15-02080-f011" class="usa-link">Figure 11</a> provides additional details on the RoB assessment results for the included RCTs.</p>
<figure class="fig xbox font-sm" id="nutrients-15-02080-f011"><h4 class="obj_head">Figure 11.</h4>
<p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&amp;p=PMC3&amp;id=10180699_nutrients-15-02080-g011.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54a8/10180699/0c50a4630919/nutrients-15-02080-g011.jpg" loading="lazy" height="529" width="747" alt="Figure 11"></a></p>
<div class="p text-right font-secondary"><a href="figure/nutrients-15-02080-f011/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div>
<figcaption><p>Risk of bias [<a href="#B18-nutrients-15-02080" class="usa-link" aria-describedby="B18-nutrients-15-02080" aria-expanded="false">18</a>,<a href="#B26-nutrients-15-02080" class="usa-link" aria-describedby="B26-nutrients-15-02080" aria-expanded="false">26</a>,<a href="#B27-nutrients-15-02080" class="usa-link" aria-describedby="B27-nutrients-15-02080" aria-expanded="false">27</a>,<a href="#B28-nutrients-15-02080" class="usa-link" aria-describedby="B28-nutrients-15-02080" aria-expanded="false">28</a>,<a href="#B29-nutrients-15-02080" class="usa-link" aria-describedby="B29-nutrients-15-02080" aria-expanded="false">29</a>,<a href="#B30-nutrients-15-02080" class="usa-link" aria-describedby="B30-nutrients-15-02080" aria-expanded="false">30</a>,<a href="#B31-nutrients-15-02080" class="usa-link" aria-describedby="B31-nutrients-15-02080" aria-expanded="false">31</a>,<a href="#B32-nutrients-15-02080" class="usa-link" aria-describedby="B32-nutrients-15-02080" aria-expanded="false">32</a>,<a href="#B33-nutrients-15-02080" class="usa-link" aria-describedby="B33-nutrients-15-02080" aria-expanded="false">33</a>,<a href="#B34-nutrients-15-02080" class="usa-link" aria-describedby="B34-nutrients-15-02080" aria-expanded="false">34</a>,<a href="#B35-nutrients-15-02080" class="usa-link" aria-describedby="B35-nutrients-15-02080" aria-expanded="false">35</a>,<a href="#B37-nutrients-15-02080" class="usa-link" aria-describedby="B37-nutrients-15-02080" aria-expanded="false">37</a>,<a href="#B38-nutrients-15-02080" class="usa-link" aria-describedby="B38-nutrients-15-02080" aria-expanded="false">38</a>,<a href="#B39-nutrients-15-02080" class="usa-link" aria-describedby="B39-nutrients-15-02080" aria-expanded="false">39</a>,<a href="#B40-nutrients-15-02080" class="usa-link" aria-describedby="B40-nutrients-15-02080" aria-expanded="false">40</a>,<a href="#B41-nutrients-15-02080" class="usa-link" aria-describedby="B41-nutrients-15-02080" aria-expanded="false">41</a>,<a href="#B42-nutrients-15-02080" class="usa-link" aria-describedby="B42-nutrients-15-02080" aria-expanded="false">42</a>,<a href="#B43-nutrients-15-02080" class="usa-link" aria-describedby="B43-nutrients-15-02080" aria-expanded="false">43</a>,<a href="#B44-nutrients-15-02080" class="usa-link" aria-describedby="B44-nutrients-15-02080" aria-expanded="false">44</a>,<a href="#B45-nutrients-15-02080" class="usa-link" aria-describedby="B45-nutrients-15-02080" aria-expanded="false">45</a>,<a href="#B46-nutrients-15-02080" class="usa-link" aria-describedby="B46-nutrients-15-02080" aria-expanded="false">46</a>,<a href="#B47-nutrients-15-02080" class="usa-link" aria-describedby="B47-nutrients-15-02080" aria-expanded="false">47</a>,<a href="#B48-nutrients-15-02080" class="usa-link" aria-describedby="B48-nutrients-15-02080" aria-expanded="false">48</a>,<a href="#B49-nutrients-15-02080" class="usa-link" aria-describedby="B49-nutrients-15-02080" aria-expanded="false">49</a>,<a href="#B50-nutrients-15-02080" class="usa-link" aria-describedby="B50-nutrients-15-02080" aria-expanded="false">50</a>,<a href="#B51-nutrients-15-02080" class="usa-link" aria-describedby="B51-nutrients-15-02080" aria-expanded="false">51</a>]. * D1: Randomization process; D2: Deviations from the intended interventions; D3: Missing outcome data; D4: Measurement of outcome; D5: Selection of the reported result.</p></figcaption></figure></section></section><section id="sec4-nutrients-15-02080"><h2 class="pmc_sec_title" data-anchor-id="sec4-nutrients-15-02080"><a id="sec4-nutrients-15-02080-anchor" data-anchor-id="sec4-nutrients-15-02080" class="usa-anchor"></a>4. Discussion</h2>
<p>To evaluate the effects of collagen supplements on skin aging, we analyzed 26 RCTs to assess the efficacy of oral collagen supplements on skin hydration and elasticity, both of which characterize skin aging. The trials measured skin hydration and elasticity on various areas of the body including the cheek, forearm, and forehead. By analyzing these parameters, our findings revealed that oral collagen supplements improved skin hydration and elasticity. The beneficial effects were significant after 8 weeks or more of HC supplementation.</p>
<section id="sec4dot1-nutrients-15-02080"><h3 class="pmc_sec_title">4.1. Hydration</h3>
<p>The key molecule involved in skin moisture is hyaluronic acid, a glycosaminoglycan with a unique capacity to retain water molecules [<a href="#B52-nutrients-15-02080" class="usa-link" aria-describedby="B52-nutrients-15-02080" aria-expanded="false">52</a>]. The most striking histochemical change observed in aging skin is the gradual loss of epidermal hyaluronic acid [<a href="#B53-nutrients-15-02080" class="usa-link" aria-describedby="B53-nutrients-15-02080" aria-expanded="false">53</a>]. Oral administration of collagen hydrolysates include rich proline-hydroxyproline, which stimulates hyaluronic acid production in the dermal fibroblast cells [<a href="#B54-nutrients-15-02080" class="usa-link" aria-describedby="B54-nutrients-15-02080" aria-expanded="false">54</a>].</p>
<p>Our study findings revealed that supplementation with oral collagens improved skin hydration, which is consistent with previous findings. Cao et al. reported that the concentration of moisture in the skin of mice treated with collagen peptides (CPs) was significantly higher compared with that of the control mice (<em>p</em> &lt; 0.05) [<a href="#B55-nutrients-15-02080" class="usa-link" aria-describedby="B55-nutrients-15-02080" aria-expanded="false">55</a>]. Sun et al. revealed that collagen as a single supplement showed remarkable effects on skin hydration, with an SMD of 0.77 (95% CI 0.60, 0.94; <em>p</em> &lt; 0.00001) compared with a placebo [<a href="#B56-nutrients-15-02080" class="usa-link" aria-describedby="B56-nutrients-15-02080" aria-expanded="false">56</a>].</p>
<p>Our findings revealed that fish was the optimal source of collagen for improving skin hydration. A previous study indicated that collagens sourced from fish skins have diverse amino acid compositions than mammalian collagens [<a href="#B57-nutrients-15-02080" class="usa-link" aria-describedby="B57-nutrients-15-02080" aria-expanded="false">57</a>]. Another study estimated that the yields of collagen derived from fish skin were 50%, collagen derived from fish bones were 40%, and collagen derived from fish fin were 36.4% [<a href="#B58-nutrients-15-02080" class="usa-link" aria-describedby="B58-nutrients-15-02080" aria-expanded="false">58</a>]. Notably, marine collagen and collagen peptides have high bioavailability, potency, and a favorable safety profile [<a href="#B59-nutrients-15-02080" class="usa-link" aria-describedby="B59-nutrients-15-02080" aria-expanded="false">59</a>].</p>
<p>In our investigations, only one study by Schwartz (2019) investigated the effect of collagen sourced from chicken, which was the least among all included studies. However, in the study by Cao et al. on the effects of the oral intake of CPs derived from chicken bones in mice showed that the concentration of moisture in the skin of mice treated with CPs was significantly higher compared with that of the control mice (<em>p</em> &lt; 0.05) [<a href="#B55-nutrients-15-02080" class="usa-link" aria-describedby="B55-nutrients-15-02080" aria-expanded="false">55</a>]. Schwastz et al. administered 1 g of collagen from hydrolyzed chicken sternal cartilage daily for 12 weeks to all human participants. The skin hydration of the participants significantly increased by 12.5% (<em>p</em> = 0.003) between weeks 6 and 12 [<a href="#B36-nutrients-15-02080" class="usa-link" aria-describedby="B36-nutrients-15-02080" aria-expanded="false">36</a>]. Additionally, it is unclear whether the results can be generalized to the wider population, as the studies were conducted on mice and humans with different characteristics and may not reflect the general population.</p></section><section id="sec4dot2-nutrients-15-02080"><h3 class="pmc_sec_title">4.2. Elasticity</h3>
<p>Fibril-forming type I collagen is the major collagen in the skin, comprising 90% of the total collagen, and plays a role in structural organization, integrity, and strength and skin [<a href="#B60-nutrients-15-02080" class="usa-link" aria-describedby="B60-nutrients-15-02080" aria-expanded="false">60</a>]. The elastic fiber network imparts elasticity and resilience to the tissues and comprises elastin and microfibrils, which are composed of various proteins [<a href="#B61-nutrients-15-02080" class="usa-link" aria-describedby="B61-nutrients-15-02080" aria-expanded="false">61</a>]. The elasticity of the skin depends on the function of the network, and its formation is a complex process involving many factors. One study showed that the intake of HC downregulated placenta growth factor-2, insulin-like growth factor binding protein 2, insulin-like growth factor binding protein 3, platelet factor 4, serpin E1, and transforming growth factor β-1, and increased type I collagen mRNA and protein levels [<a href="#B62-nutrients-15-02080" class="usa-link" aria-describedby="B62-nutrients-15-02080" aria-expanded="false">62</a>].</p>
<p>Our findings revealed that supplementation with oral collagen improves skin elasticity, which are consistent with previous findings. De Luca et al. found that patients taking marine collagen peptides significantly improved skin elasticity (<em>p</em> &lt; 0.0001) [<a href="#B63-nutrients-15-02080" class="usa-link" aria-describedby="B63-nutrients-15-02080" aria-expanded="false">63</a>]. Maia Campos et al. demonstrated that a group treated with oral collagen showed significant differences in the mechanical properties of the skin compared with the baseline and placebo groups after 90 days of treatment only in the net elasticity parameter in the periorbital region [<a href="#B64-nutrients-15-02080" class="usa-link" aria-describedby="B64-nutrients-15-02080" aria-expanded="false">64</a>]. Lee et al. showed that 12 weeks of oral collagen film consumption significantly increased the elasticity of the skin surface (R2), yielding 0.66 ± 0.05 before use to 0.75 ± 0.04 after 12 weeks (<em>p</em> &lt; 0.05) [<a href="#B65-nutrients-15-02080" class="usa-link" aria-describedby="B65-nutrients-15-02080" aria-expanded="false">65</a>]. The study conducted by Sone et al. (2018) was conducted on chronologically aged mice, which showed that oral administration of collagen peptides derived from bovine bone can improve the laxity of chronologically aged skin in mice by increasing the skin collagen content and ratio of type I to type III collagen. The study also suggested that collagen peptides may increase antioxidant properties in the body, and proline intake can improve the elasticity of chronologically aged skin in mice [<a href="#B66-nutrients-15-02080" class="usa-link" aria-describedby="B66-nutrients-15-02080" aria-expanded="false">66</a>].</p>
<p>Among the included studies, Yoon et al. showed that in humans, 12 weeks of supplementation with oral collagen significantly improved skin elasticity (3.25, 95% CI 2.33, 4.18) compared with other durations. This finding is consistent with that of an open, blinded, and noncomparative study, which showed 38.31% of improvement in elasticity after consuming oral collagen for 3 months [<a href="#B67-nutrients-15-02080" class="usa-link" aria-describedby="B67-nutrients-15-02080" aria-expanded="false">67</a>]. Another study examined obvious characteristics of skin aging in nude mice after combining treatment with D-galactose and ultraviolet radiation. However, after the oral administration of CP, the concentrations of skin collagen and elastin increased [<a href="#B68-nutrients-15-02080" class="usa-link" aria-describedby="B68-nutrients-15-02080" aria-expanded="false">68</a>]. While studies suggest that oral collagen supplementation may improve skin elasticity, it is important to consider the limitations of the research. The studies used different durations and forms of collagen supplementation, making it difficult to compare the results. Furthermore, the sample sizes of the studies were relatively small, and the human studies relied on self-reported measures of skin elasticity. Additionally, the study on nude mice may not accurately reflect the effects of oral collagen supplementation in humans.</p></section><section id="sec4dot3-nutrients-15-02080"><h3 class="pmc_sec_title">4.3. Mechanism</h3>
<p>Protein hydrolysates are easier to digest and absorb than intact proteins, which increase the production of amino acids after meals [<a href="#B69-nutrients-15-02080" class="usa-link" aria-describedby="B69-nutrients-15-02080" aria-expanded="false">69</a>]. An in vivo mouse model study found transient increases in the Gly-Pro-Hyp levels in the blood of both humans and mice and that other collagen peptides were also transported to the skin after the ingestion of HC [<a href="#B70-nutrients-15-02080" class="usa-link" aria-describedby="B70-nutrients-15-02080" aria-expanded="false">70</a>]. Kamiyama et al. used [14C] Gly-Pro-Hyp as a tracer for the tripeptide and compared its absorption with 14C-labeled proline in rats. At 14 days after the administration of [14C] Gly-Pro-Hyp, almost all radioactivity disappeared from the organs, except for the skin, with a radioactivity of 70% observed after 6 h [<a href="#B71-nutrients-15-02080" class="usa-link" aria-describedby="B71-nutrients-15-02080" aria-expanded="false">71</a>]. Another similar study observed radioactivity after a single administration of [14C] Gly-Pro-Hyp in the connective tissues including the bones and skin within 24 h [<a href="#B72-nutrients-15-02080" class="usa-link" aria-describedby="B72-nutrients-15-02080" aria-expanded="false">72</a>].</p></section><section id="sec4dot4-nutrients-15-02080"><h3 class="pmc_sec_title">4.4. Sensitivity Analysis</h3>
<p>In this study, two included RCTs, namely Campos et al. [<a href="#B29-nutrients-15-02080" class="usa-link" aria-describedby="B29-nutrients-15-02080" aria-expanded="false">29</a>] (2.17, 95% CI 1.52, 2.81) Choi et al. [<a href="#B32-nutrients-15-02080" class="usa-link" aria-describedby="B32-nutrients-15-02080" aria-expanded="false">32</a>] (1.61, 95% CI 0.44, 2.78), yielded favorable effects of oral collagen supplementation on skin elasticity. Campos (2015) used a mixture of 10 g of collagen and vitamin A, C, E, zinc as well as excipients, which had beneficial effects, possibly because of its synergism with collagen. A study found that vitamin C triggers a considerable thickening of the epidermis, induces the production of collagen and the formation of elastic microfibrils [<a href="#B73-nutrients-15-02080" class="usa-link" aria-describedby="B73-nutrients-15-02080" aria-expanded="false">73</a>]. By contrast, vitamin A maintains the health of the epithelial cells on the surface of the skin and increases the production of collagen and the extracellular matrix [<a href="#B74-nutrients-15-02080" class="usa-link" aria-describedby="B74-nutrients-15-02080" aria-expanded="false">74</a>,<a href="#B75-nutrients-15-02080" class="usa-link" aria-describedby="B75-nutrients-15-02080" aria-expanded="false">75</a>]. However, because Choi (2014) enrolled participants aged 3048 years, which were younger than the participants in the other included studies, it is possible that this study yielded better results due to factors such as a potentially lower prevalence of underlying health conditions or greater overall health among the younger participants. This might thus explain why this study yielded better results. A clinical study that contributed that the composition of the basement membrane changed with age showed that the concentrations of collagen IV, collagen IV, and collagen XII decreased over time [<a href="#B76-nutrients-15-02080" class="usa-link" aria-describedby="B76-nutrients-15-02080" aria-expanded="false">76</a>]. Thus, a sensitivity analysis was performed to assess the influence of these two studies, and the results of the corresponding forest plots are provided in the <a href="#app1-nutrients-15-02080" class="usa-link">Supplementary Materials</a>. The exclusion of this study resulted in no significant change, and the effects of collagen supplementation remained favorable.</p></section><section id="sec4dot5-nutrients-15-02080"><h3 class="pmc_sec_title">4.5. Limitations</h3>
<p>This study had several limitations. First, the interventions used in the included studies exhibited some heterogeneity, primarily because of the distinct measurement units and composition of the supplementation. Second, the number of patients included in some studies was less than 40. Therefore, a small sample size may have resulted in a slight RoB. Third, the patients lifestyle habits were not included in the analysis. For example, HC supplementation in patients with healthier lifestyle habits could have presented more evident results in improving the appearance of the skin. Thus, additional studies, specifically large clinical trials, are needed.</p></section></section><section id="sec5-nutrients-15-02080"><h2 class="pmc_sec_title" data-anchor-id="sec5-nutrients-15-02080"><a id="sec5-nutrients-15-02080-anchor" data-anchor-id="sec5-nutrients-15-02080" class="usa-anchor"></a>5. Conclusions</h2>
<p>The findings of this study revealed that HC supplementation can improve skin hydration and elasticity. In addition, the long-term use of collagen yields more favorable effects on skin hydration and elasticity than the short-term use of collagen. Nevertheless, large-scale randomized control trials are required to examine the clinical benefits of oral collagen supplements.</p></section><section id="app1-nutrients-15-02080" class="app"><h2 class="pmc_sec_title" data-anchor-id="app1-nutrients-15-02080"><a id="app1-nutrients-15-02080-anchor" data-anchor-id="app1-nutrients-15-02080" class="usa-anchor"></a>Supplementary Materials</h2>
<p>The following supporting information can be downloaded at: <a href="https://www.mdpi.com/article/10.3390/nu15092080/s1" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">https://www.mdpi.com/article/10.3390/nu15092080/s1</a>, Figure S1. Elasticity-sensitivity analysis; Figure S2. Hydration-sensitivity analysis.</p>
<section class="sm xbox font-sm" id="nutrients-15-02080-s001"><div class="media p"><div class="caption">
<a href="/articles/instance/10180699/bin/nutrients-15-02080-s001.zip" data-ga-action="click_feat_suppl" class="usa-link">Click here for additional data file.</a><sup> (117.3KB, zip) </sup>
</div></div></section></section><section id="notes1"><h2 class="pmc_sec_title" data-anchor-id="notes1"><a id="notes1-anchor" data-anchor-id="notes1" class="usa-anchor"></a>Author Contributions</h2>
<p>Conceptualization: S.-Y.P.; Data curation: S.-Y.P. and Y.-N.K.; Formal analysis: S.-Y.P. and C.C.; Funding acquisition: Y.-L.H.; Investigation: C.C.; Methodology: S.-Y.P., Y.-L.H., C.-M.P. and C.C.; Project administration: C.-M.P., Y.-N.K., K.-H.C. and C.C.; Software: C.-M.P., Y.-N.K. and C.C.; Supervision: C.C. and C.-M.P.; Validation: S.-Y.P., Y.-L.H., C.-M.P. and C.C.; Visualization: S.-Y.P.; Writing—original draft: S.-Y.P., C.-M.P. and Y.-L.H.; Writing—review &amp; editing: K.D.H., K.-H.C. and C.C. All authors have read and agreed to the published version of the manuscript.</p></section><section id="notes2"><h2 class="pmc_sec_title" data-anchor-id="notes2"><a id="notes2-anchor" data-anchor-id="notes2" class="usa-anchor"></a>Institutional Review Board Statement</h2>
<p>This study did not require ethical approval.</p></section><section id="notes3"><h2 class="pmc_sec_title" data-anchor-id="notes3"><a id="notes3-anchor" data-anchor-id="notes3" class="usa-anchor"></a>Informed Consent Statement</h2>
<p>This study did not involve humans. </p></section><section id="notes4"><h2 class="pmc_sec_title" data-anchor-id="notes4"><a id="notes4-anchor" data-anchor-id="notes4" class="usa-anchor"></a>Data Availability Statement</h2>
<p>Data will be made available on reasonable request.</p></section><section id="notes5"><h2 class="pmc_sec_title" data-anchor-id="notes5"><a id="notes5-anchor" data-anchor-id="notes5" class="usa-anchor"></a>Conflicts of Interest</h2>
<p>The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.</p></section><section id="funding-statement1" lang="en"><h2 class="pmc_sec_title" data-anchor-id="funding-statement1"><a id="funding-statement1-anchor" data-anchor-id="funding-statement1" class="usa-anchor"></a>Funding Statement</h2>
<p>This research was funded by Taipei Municipal Wanfang Hospital (managed by Taipei Medical University), grant number 111TMU-WFH-06.</p></section><section id="fn-group1" class="fn-group"><h2 class="pmc_sec_title" data-anchor-id="fn-group1"><a id="fn-group1-anchor" data-anchor-id="fn-group1" class="usa-anchor"></a>Footnotes</h2>
<div class="fn-group p font-secondary-light font-sm"><div class="fn p" id="fn3"><p><strong>Disclaimer/Publishers Note:</strong> The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.</p></div></div></section><section id="ref-list1" class="ref-list"><h2 class="pmc_sec_title" data-anchor-id="ref-list1"><a id="ref-list1-anchor" data-anchor-id="ref-list1" class="usa-anchor"></a>References</h2>
<section id="ref-list1_sec2"><ul class="ref-list font-sm" style="list-style-type:none">
<li id="B1-nutrients-15-02080">
<span class="label">1.</span><cite>Zouboulis C.C. Human Skin: An Independent Peripheral Endocrine Organ. Horm. Res. Paediatr. 2000;54:230242. doi: 10.1159/000053265.</cite> [<a href="https://doi.org/10.1159/000053265" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/11595811/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Horm.%20Res.%20Paediatr.&amp;title=Human%20Skin:%20An%20Independent%20Peripheral%20Endocrine%20Organ&amp;author=C.C.%20Zouboulis&amp;volume=54&amp;publication_year=2000&amp;pages=230-242&amp;pmid=11595811&amp;doi=10.1159/000053265&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B2-nutrients-15-02080">
<span class="label">2.</span><cite>Lee D.E., Huh C.S., Ra J., Choi I.D., Jeong J.W., Kim S.H., Ryu J.H., Seo Y.K., Koh J.S., Lee J.H., et al. Ahn, Clinical Evidence of Effects of Lactobacillus plantarum HY7714 on Skin Aging: A Randomized, Double Blind, Placebo-Controlled Study. J. Microbiol. Biotechnol. 2015;25:21602168. doi: 10.4014/jmb.1509.09021.</cite> [<a href="https://doi.org/10.4014/jmb.1509.09021" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26428734/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Microbiol.%20Biotechnol.&amp;title=Ahn,%20Clinical%20Evidence%20of%20Effects%20of%20Lactobacillus%20plantarum%20HY7714%20on%20Skin%20Aging:%20A%20Randomized,%20Double%20Blind,%20Placebo-Controlled%20Study&amp;author=D.E.%20Lee&amp;author=C.S.%20Huh&amp;author=J.%20Ra&amp;author=I.D.%20Choi&amp;author=J.W.%20Jeong&amp;volume=25&amp;publication_year=2015&amp;pages=2160-2168&amp;pmid=26428734&amp;doi=10.4014/jmb.1509.09021&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B3-nutrients-15-02080">
<span class="label">3.</span><cite>Honigman R., Castle D.J. Aging and cosmetic enhancement. Clin. Interv. Aging. 2006;1:115119. doi: 10.2147/ciia.2006.1.2.115.</cite> [<a href="https://doi.org/10.2147/ciia.2006.1.2.115" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2695163/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/18044108/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Clin.%20Interv.%20Aging&amp;title=Aging%20and%20cosmetic%20enhancement&amp;author=R.%20Honigman&amp;author=D.J.%20Castle&amp;volume=1&amp;publication_year=2006&amp;pages=115-119&amp;pmid=18044108&amp;doi=10.2147/ciia.2006.1.2.115&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B4-nutrients-15-02080">
<span class="label">4.</span><cite>Lordan R. Dietary supplements and nutraceuticals market growth during the coronavirus pandemic—Implications for consumers and regulatory oversight. PharmaNutrition. 2021;18:100282. doi: 10.1016/j.phanu.2021.100282.</cite> [<a href="https://doi.org/10.1016/j.phanu.2021.100282" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC8416287/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/34513589/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=PharmaNutrition&amp;title=Dietary%20supplements%20and%20nutraceuticals%20market%20growth%20during%20the%20coronavirus%20pandemic%E2%80%94Implications%20for%20consumers%20and%20regulatory%20oversight&amp;author=R.%20Lordan&amp;volume=18&amp;publication_year=2021&amp;pages=100282&amp;pmid=34513589&amp;doi=10.1016/j.phanu.2021.100282&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B5-nutrients-15-02080">
<span class="label">5.</span><cite>Uitto J. Connective tissue biochemistry of the aging dermis. Age-related alterations in collagen and elastin. Dermatol. Clin. 1986;4:433446. doi: 10.1016/S0733-8635(18)30806-4.</cite> [<a href="https://doi.org/10.1016/S0733-8635(18)30806-4" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/3521988/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Dermatol.%20Clin.&amp;title=Connective%20tissue%20biochemistry%20of%20the%20aging%20dermis.%20Age-related%20alterations%20in%20collagen%20and%20elastin&amp;author=J.%20Uitto&amp;volume=4&amp;publication_year=1986&amp;pages=433-446&amp;pmid=3521988&amp;doi=10.1016/S0733-8635(18)30806-4&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B6-nutrients-15-02080">
<span class="label">6.</span><cite>Shoulders M.D., Raines R.T. Collagen structure and stability. Annu. Rev. Biochem. 2009;78:929958. doi: 10.1146/annurev.biochem.77.032207.120833.</cite> [<a href="https://doi.org/10.1146/annurev.biochem.77.032207.120833" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2846778/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19344236/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Annu.%20Rev.%20Biochem.&amp;title=Collagen%20structure%20and%20stability&amp;author=M.D.%20Shoulders&amp;author=R.T.%20Raines&amp;volume=78&amp;publication_year=2009&amp;pages=929-958&amp;pmid=19344236&amp;doi=10.1146/annurev.biochem.77.032207.120833&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B7-nutrients-15-02080">
<span class="label">7.</span><cite>Frantz C., Stewart K.M., Weaver V.M. The extracellular matrix at a glance. J. Cell Sci. 2010;123:41954200. doi: 10.1242/jcs.023820.</cite> [<a href="https://doi.org/10.1242/jcs.023820" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2995612/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21123617/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Cell%20Sci.&amp;title=The%20extracellular%20matrix%20at%20a%20glance&amp;author=C.%20Frantz&amp;author=K.M.%20Stewart&amp;author=V.M.%20Weaver&amp;volume=123&amp;publication_year=2010&amp;pages=4195-4200&amp;pmid=21123617&amp;doi=10.1242/jcs.023820&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B8-nutrients-15-02080">
<span class="label">8.</span><cite>Calleja-Agius J., Muscat-Baron Y., Brincat M.P. Skin ageing. Menopause Int. 2007;13:6064. doi: 10.1258/175404507780796325.</cite> [<a href="https://doi.org/10.1258/175404507780796325" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/17540135/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Menopause%20Int.&amp;title=Skin%20ageing&amp;author=J.%20Calleja-Agius&amp;author=Y.%20Muscat-Baron&amp;author=M.P.%20Brincat&amp;volume=13&amp;publication_year=2007&amp;pages=60-64&amp;pmid=17540135&amp;doi=10.1258/175404507780796325&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B9-nutrients-15-02080">
<span class="label">9.</span><cite>Bolognia J.L., Braverman I.M., Rousseau M.E., Sarrel P.M. Skin changes in menopause. Maturitas. 1989;11:295304. doi: 10.1016/0378-5122(89)90026-1.</cite> [<a href="https://doi.org/10.1016/0378-5122(89)90026-1" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/2693917/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Maturitas&amp;title=Skin%20changes%20in%20menopause&amp;author=J.L.%20Bolognia&amp;author=I.M.%20Braverman&amp;author=M.E.%20Rousseau&amp;author=P.M.%20Sarrel&amp;volume=11&amp;publication_year=1989&amp;pages=295-304&amp;pmid=2693917&amp;doi=10.1016/0378-5122(89)90026-1&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B10-nutrients-15-02080">
<span class="label">10.</span><cite>Castelo-Branco C., Duran M., González-Merlo J. Skin collagen changes related to age and hormone replacement therapy. Maturitas. 1992;15:113119. doi: 10.1016/0378-5122(92)90245-Y.</cite> [<a href="https://doi.org/10.1016/0378-5122(92)90245-Y" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/1345134/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Maturitas&amp;title=Skin%20collagen%20changes%20related%20to%20age%20and%20hormone%20replacement%20therapy&amp;author=C.%20Castelo-Branco&amp;author=M.%20Duran&amp;author=J.%20Gonz%C3%A1lez-Merlo&amp;volume=15&amp;publication_year=1992&amp;pages=113-119&amp;pmid=1345134&amp;doi=10.1016/0378-5122(92)90245-Y&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B11-nutrients-15-02080">
<span class="label">11.</span><cite>Robins S.P. Biochemistry and functional significance of collagen cross-linking. Biochem. Soc. Trans. 2007;35:849852. doi: 10.1042/BST0350849.</cite> [<a href="https://doi.org/10.1042/BST0350849" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/17956230/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Biochem.%20Soc.%20Trans.&amp;title=Biochemistry%20and%20functional%20significance%20of%20collagen%20cross-linking&amp;author=S.P.%20Robins&amp;volume=35&amp;publication_year=2007&amp;pages=849-852&amp;pmid=17956230&amp;doi=10.1042/BST0350849&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B12-nutrients-15-02080">
<span class="label">12.</span><cite>Schagen S.K., Zampeli V.A., Makrantonaki E., Zouboulis C.C. Discovering the link between nutrition and skin aging. Dermatoendocrinology. 2012;4:298307. doi: 10.4161/derm.22876.</cite> [<a href="https://doi.org/10.4161/derm.22876" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3583891/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23467449/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Dermatoendocrinology&amp;title=Discovering%20the%20link%20between%20nutrition%20and%20skin%20aging&amp;author=S.K.%20Schagen&amp;author=V.A.%20Zampeli&amp;author=E.%20Makrantonaki&amp;author=C.C.%20Zouboulis&amp;volume=4&amp;publication_year=2012&amp;pages=298-307&amp;pmid=23467449&amp;doi=10.4161/derm.22876&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B13-nutrients-15-02080">
<span class="label">13.</span><cite>Lee Y.I., Lee S.G., Jung I., Suk J., Lee M.H., Kim D.U., Lee J.H. Effect of a Topical Collagen Tripeptide on Antiaging and Inhibition of Glycation of the Skin: A Pilot Study. Int. J. Mol. Sci. 2022;23:1101. doi: 10.3390/ijms23031101.</cite> [<a href="https://doi.org/10.3390/ijms23031101" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC8835374/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/35163025/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Int.%20J.%20Mol.%20Sci.&amp;title=Effect%20of%20a%20Topical%20Collagen%20Tripeptide%20on%20Antiaging%20and%20Inhibition%20of%20Glycation%20of%20the%20Skin:%20A%20Pilot%20Study&amp;author=Y.I.%20Lee&amp;author=S.G.%20Lee&amp;author=I.%20Jung&amp;author=J.%20Suk&amp;author=M.H.%20Lee&amp;volume=23&amp;publication_year=2022&amp;pages=1101&amp;pmid=35163025&amp;doi=10.3390/ijms23031101&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B14-nutrients-15-02080">
<span class="label">14.</span><cite>Cockerham K., Hsu V.J. Collagen-based dermal fillers: Past, present, future. Facial Plast. Surg. 2009;25:106113. doi: 10.1055/s-0029-1220650.</cite> [<a href="https://doi.org/10.1055/s-0029-1220650" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19415578/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Facial%20Plast.%20Surg.&amp;title=Collagen-based%20dermal%20fillers:%20Past,%20present,%20future&amp;author=K.%20Cockerham&amp;author=V.J.%20Hsu&amp;volume=25&amp;publication_year=2009&amp;pages=106-113&amp;pmid=19415578&amp;doi=10.1055/s-0029-1220650&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B15-nutrients-15-02080">
<span class="label">15.</span><cite>León-López A., Morales-Peñaloza A., Martínez-Juárez V.M., Vargas-Torres A., Zeugolis D.I., Aguirre-Álvarez G. Hydrolyzed Collagen-Sources and Applications. Molecules. 2019;24:4031. doi: 10.3390/molecules24224031.</cite> [<a href="https://doi.org/10.3390/molecules24224031" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC6891674/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31703345/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Molecules&amp;title=Hydrolyzed%20Collagen-Sources%20and%20Applications&amp;author=A.%20Le%C3%B3n-L%C3%B3pez&amp;author=A.%20Morales-Pe%C3%B1aloza&amp;author=V.M.%20Mart%C3%ADnez-Ju%C3%A1rez&amp;author=A.%20Vargas-Torres&amp;author=D.I.%20Zeugolis&amp;volume=24&amp;publication_year=2019&amp;pages=4031&amp;pmid=31703345&amp;doi=10.3390/molecules24224031&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B16-nutrients-15-02080">
<span class="label">16.</span><cite>de Miranda R.B., Weimer P., Rossi R.C. Effects of hydrolyzed collagen supplementation on skin aging: A systematic review and meta-analysis. Int. J. Dermatol. 2021;60:14491461. doi: 10.1111/ijd.15518.</cite> [<a href="https://doi.org/10.1111/ijd.15518" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33742704/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Int.%20J.%20Dermatol.&amp;title=Effects%20of%20hydrolyzed%20collagen%20supplementation%20on%20skin%20aging:%20A%20systematic%20review%20and%20meta-analysis&amp;author=R.B.%20de%20Miranda&amp;author=P.%20Weimer&amp;author=R.C.%20Rossi&amp;volume=60&amp;publication_year=2021&amp;pages=1449-1461&amp;pmid=33742704&amp;doi=10.1111/ijd.15518&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B17-nutrients-15-02080">
<span class="label">17.</span><cite>Ohara H., Matsumoto H., Ito K., Iwai K., Sato K. Comparison of quantity and structures of hydroxyproline-containing peptides in human blood after oral ingestion of gelatin hydrolysates from different sources. J. Agric. Food Chem. 2007;55:15321535. doi: 10.1021/jf062834s.</cite> [<a href="https://doi.org/10.1021/jf062834s" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/17253720/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Agric.%20Food%20Chem.&amp;title=Comparison%20of%20quantity%20and%20structures%20of%20hydroxyproline-containing%20peptides%20in%20human%20blood%20after%20oral%20ingestion%20of%20gelatin%20hydrolysates%20from%20different%20sources&amp;author=H.%20Ohara&amp;author=H.%20Matsumoto&amp;author=K.%20Ito&amp;author=K.%20Iwai&amp;author=K.%20Sato&amp;volume=55&amp;publication_year=2007&amp;pages=1532-1535&amp;pmid=17253720&amp;doi=10.1021/jf062834s&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B18-nutrients-15-02080">
<span class="label">18.</span><cite>Proksch E., Segger D., Degwert J., Schunck M., Zague V., Oesser S. Oral supplementation of specific collagen peptides has beneficial effects on human skin physiology: A double-blind, placebo-controlled study. Skin Pharmacol. Physiol. 2014;27:4755. doi: 10.1159/000351376.</cite> [<a href="https://doi.org/10.1159/000351376" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23949208/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Skin%20Pharmacol.%20Physiol.&amp;title=Oral%20supplementation%20of%20specific%20collagen%20peptides%20has%20beneficial%20effects%20on%20human%20skin%20physiology:%20A%20double-blind,%20placebo-controlled%20study&amp;author=E.%20Proksch&amp;author=D.%20Segger&amp;author=J.%20Degwert&amp;author=M.%20Schunck&amp;author=V.%20Zague&amp;volume=27&amp;publication_year=2014&amp;pages=47-55&amp;pmid=23949208&amp;doi=10.1159/000351376&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B19-nutrients-15-02080">
<span class="label">19.</span><cite>Oesser S., Adam M., Babel W., Seifert J. Oral administration of 14C labeled gelatin hydrolysate leads to an accumulation of radioactivity in cartilage of mice (C57/BL) J. Nutr. 1999;129:18911895. doi: 10.1093/jn/129.10.1891.</cite> [<a href="https://doi.org/10.1093/jn/129.10.1891" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/10498764/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Nutr.&amp;title=Oral%20administration%20of%2014C%20labeled%20gelatin%20hydrolysate%20leads%20to%20an%20accumulation%20of%20radioactivity%20in%20cartilage%20of%20mice%20(C57/BL)&amp;author=S.%20Oesser&amp;author=M.%20Adam&amp;author=W.%20Babel&amp;author=J.%20Seifert&amp;volume=129&amp;publication_year=1999&amp;pages=1891-1895&amp;pmid=10498764&amp;doi=10.1093/jn/129.10.1891&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B20-nutrients-15-02080">
<span class="label">20.</span><cite>Wang H. A Review of the Effects of Collagen Treatment in Clinical Studies. Polymers. 2021;13:3868. doi: 10.3390/polym13223868.</cite> [<a href="https://doi.org/10.3390/polym13223868" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC8620403/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/34833168/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Polymers&amp;title=A%20Review%20of%20the%20Effects%20of%20Collagen%20Treatment%20in%20Clinical%20Studies&amp;author=H.%20Wang&amp;volume=13&amp;publication_year=2021&amp;pages=3868&amp;pmid=34833168&amp;doi=10.3390/polym13223868&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B21-nutrients-15-02080">
<span class="label">21.</span><cite>Rohatgi A. WebPlotDigitizer. Ankit Rohatgi; Pacifica, CA, USA: 2022. version 4.6.</cite> [<a href="https://scholar.google.com/scholar_lookup?title=WebPlotDigitizer&amp;author=A.%20Rohatgi&amp;publication_year=2022&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B22-nutrients-15-02080">
<span class="label">22.</span><cite>Higgins J.P., Thompson S.G., Deeks J.J., Altman D.G. Measuring inconsistency in meta-analyses. BMJ. 2003;327:557560. doi: 10.1136/bmj.327.7414.557.</cite> [<a href="https://doi.org/10.1136/bmj.327.7414.557" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC192859/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/12958120/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=BMJ&amp;title=Measuring%20inconsistency%20in%20meta-analyses&amp;author=J.P.%20Higgins&amp;author=S.G.%20Thompson&amp;author=J.J.%20Deeks&amp;author=D.G.%20Altman&amp;volume=327&amp;publication_year=2003&amp;pages=557-560&amp;pmid=12958120&amp;doi=10.1136/bmj.327.7414.557&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B23-nutrients-15-02080">
<span class="label">23.</span><cite>Higgins J.P., Thomas J., Chandler J., Cumpston M., Li T., Page M.J., Welch V.A. Cochrane Handbook for Systematic Reviews of Interventions. John Wiley &amp; Sons; Hoboken, NJ, USA: 2019. </cite> [<a href="https://scholar.google.com/scholar_lookup?title=Cochrane%20Handbook%20for%20Systematic%20Reviews%20of%20Interventions&amp;author=J.P.%20Higgins&amp;author=J.%20Thomas&amp;author=J.%20Chandler&amp;author=M.%20Cumpston&amp;author=T.%20Li&amp;publication_year=2019&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B24-nutrients-15-02080">
<span class="label">24.</span><cite>Sterne J.A.C., Savović J., Page M.J., Elbers R.G., Blencowe N.S., Boutron I., Cates C.J., Cheng H.Y., Corbett M.S., Eldridge S.M., et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:l4898. doi: 10.1136/bmj.l4898.</cite> [<a href="https://doi.org/10.1136/bmj.l4898" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31462531/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=BMJ&amp;title=RoB%202:%20A%20revised%20tool%20for%20assessing%20risk%20of%20bias%20in%20randomised%20trials&amp;author=J.A.C.%20Sterne&amp;author=J.%20Savovi%C4%87&amp;author=M.J.%20Page&amp;author=R.G.%20Elbers&amp;author=N.S.%20Blencowe&amp;volume=366&amp;publication_year=2019&amp;pages=l4898&amp;pmid=31462531&amp;doi=10.1136/bmj.l4898&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B25-nutrients-15-02080">
<span class="label">25.</span><cite>Page M.J., McKenzie J.E., Bossuyt P.M., Boutron I., Hoffmann T.C., Mulrow C.D., Shamseer L., Tetzlaff J.M., Akl E.A., Brennan S.E., et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. doi: 10.1136/bmj.n71.</cite> [<a href="https://doi.org/10.1136/bmj.n71" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC8005924/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33782057/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=BMJ&amp;title=The%20PRISMA%202020%20statement:%20An%20updated%20guideline%20for%20reporting%20systematic%20reviews&amp;author=M.J.%20Page&amp;author=J.E.%20McKenzie&amp;author=P.M.%20Bossuyt&amp;author=I.%20Boutron&amp;author=T.C.%20Hoffmann&amp;volume=372&amp;publication_year=2021&amp;pages=n71&amp;pmid=33782057&amp;doi=10.1136/bmj.n71&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B26-nutrients-15-02080">
<span class="label">26.</span><cite>Bolke L., Schlippe G., Gerss J., Voss W. A Collagen Supplement Improves Skin Hydration, Elasticity, Roughness, and Density: Results of a Randomized, Placebo-Controlled, Blind Study. Nutrients. 2019;11:2494. doi: 10.3390/nu11102494.</cite> [<a href="https://doi.org/10.3390/nu11102494" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC6835901/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31627309/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nutrients&amp;title=A%20Collagen%20Supplement%20Improves%20Skin%20Hydration,%20Elasticity,%20Roughness,%20and%20Density:%20Results%20of%20a%20Randomized,%20Placebo-Controlled,%20Blind%20Study&amp;author=L.%20Bolke&amp;author=G.%20Schlippe&amp;author=J.%20Gerss&amp;author=W.%20Voss&amp;volume=11&amp;publication_year=2019&amp;pages=2494&amp;pmid=31627309&amp;doi=10.3390/nu11102494&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B27-nutrients-15-02080">
<span class="label">27.</span><cite>Koizumi S., Inoue N., Shimizu M., Kwon C.-J., Kim H.-Y., Park K.S. Effects of Dietary Supplementation with Fish Scales-Derived Collagen Peptides on Skin Parameters and Condition: A Randomized, Placebo-Controlled, Double-Blind Study. Int. J. Pept. Res. Ther. 2017;24:397402. doi: 10.1007/s10989-017-9626-0.</cite> [<a href="https://doi.org/10.1007/s10989-017-9626-0" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Int.%20J.%20Pept.%20Res.%20Ther.&amp;title=Effects%20of%20Dietary%20Supplementation%20with%20Fish%20Scales-Derived%20Collagen%20Peptides%20on%20Skin%20Parameters%20and%20Condition:%20A%20Randomized,%20Placebo-Controlled,%20Double-Blind%20Study&amp;author=S.%20Koizumi&amp;author=N.%20Inoue&amp;author=M.%20Shimizu&amp;author=C.-J.%20Kwon&amp;author=H.-Y.%20Kim&amp;volume=24&amp;publication_year=2017&amp;pages=397-402&amp;doi=10.1007/s10989-017-9626-0&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B28-nutrients-15-02080">
<span class="label">28.</span><cite>Sugihara F., Inoue N., Wang X. Clinical effects of ingesting collagen hydrolysate on facial skin properties. JPN Pharmacol. Ther. 2015;43:6770.</cite> [<a href="https://scholar.google.com/scholar_lookup?journal=JPN%20Pharmacol.%20Ther.&amp;title=Clinical%20effects%20of%20ingesting%20collagen%20hydrolysate%20on%20facial%20skin%20properties&amp;author=F.%20Sugihara&amp;author=N.%20Inoue&amp;author=X.%20Wang&amp;volume=43&amp;publication_year=2015&amp;pages=67-70&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B29-nutrients-15-02080">
<span class="label">29.</span><cite>Campos P.M., Melo M.O., Calixto L.S., Fossa M.M. An Oral Supplementation Based on Hydrolyzed Collagen and Vitamins Improves Skin Elasticity and Dermis Echogenicity: A Clinical Placebo-Controlled Study. Clin. Pharmacol. Biopharm. 2015;4:2. doi: 10.4172/2167-065X.1000142.</cite> [<a href="https://doi.org/10.4172/2167-065X.1000142" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Clin.%20Pharmacol.%20Biopharm.&amp;title=An%20Oral%20Supplementation%20Based%20on%20Hydrolyzed%20Collagen%20and%20Vitamins%20Improves%20Skin%20Elasticity%20and%20Dermis%20Echogenicity:%20A%20Clinical%20Placebo-Controlled%20Study&amp;author=P.M.%20Campos&amp;author=M.O.%20Melo&amp;author=L.S.%20Calixto&amp;author=M.M.%20Fossa&amp;volume=4&amp;publication_year=2015&amp;pages=2&amp;doi=10.4172/2167-065X.1000142&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B30-nutrients-15-02080">
<span class="label">30.</span><cite>Asserin J., Lati E., Shioya T., Prawitt J. The effect of oral collagen peptide supplementation on skin moisture and the dermal collagen network: Evidence from an ex vivo model and randomized, placebo-controlled clinical trials. J. Cosmet. Dermatol. 2015;14:291301. doi: 10.1111/jocd.12174.</cite> [<a href="https://doi.org/10.1111/jocd.12174" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26362110/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Cosmet.%20Dermatol.&amp;title=The%20effect%20of%20oral%20collagen%20peptide%20supplementation%20on%20skin%20moisture%20and%20the%20dermal%20collagen%20network:%20Evidence%20from%20an%20ex%20vivo%20model%20and%20randomized,%20placebo-controlled%20clinical%20trials&amp;author=J.%20Asserin&amp;author=E.%20Lati&amp;author=T.%20Shioya&amp;author=J.%20Prawitt&amp;volume=14&amp;publication_year=2015&amp;pages=291-301&amp;pmid=26362110&amp;doi=10.1111/jocd.12174&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B31-nutrients-15-02080">
<span class="label">31.</span><cite>Ito N., Seki S., Ueda F. Effects of Composite Supplement Containing Collagen Peptide and Ornithine on Skin Conditions and Plasma IGF-1 Levels-A Randomized, Double-Blind, Placebo-Controlled Trial. Mar. Drugs. 2018;16:482. doi: 10.3390/md16120482.</cite> [<a href="https://doi.org/10.3390/md16120482" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC6315531/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30513923/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Mar.%20Drugs&amp;title=Effects%20of%20Composite%20Supplement%20Containing%20Collagen%20Peptide%20and%20Ornithine%20on%20Skin%20Conditions%20and%20Plasma%20IGF-1%20Levels-A%20Randomized,%20Double-Blind,%20Placebo-Controlled%20Trial&amp;author=N.%20Ito&amp;author=S.%20Seki&amp;author=F.%20Ueda&amp;volume=16&amp;publication_year=2018&amp;pages=482&amp;pmid=30513923&amp;doi=10.3390/md16120482&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B32-nutrients-15-02080">
<span class="label">32.</span><cite>Choi S.Y., Ko E.J., Lee Y.H., Kim B.G., Shin H.J., Seo D.B., Lee S.J., Kim B.J., Kim M.N. Effects of collagen tripeptide supplement on skin properties: A prospective, randomized, controlled study. J. Cosmet. Laser Ther. 2014;16:132137. doi: 10.3109/14764172.2013.854119.</cite> [<a href="https://doi.org/10.3109/14764172.2013.854119" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24131075/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Cosmet.%20Laser%20Ther.&amp;title=Effects%20of%20collagen%20tripeptide%20supplement%20on%20skin%20properties:%20A%20prospective,%20randomized,%20controlled%20study&amp;author=S.Y.%20Choi&amp;author=E.J.%20Ko&amp;author=Y.H.%20Lee&amp;author=B.G.%20Kim&amp;author=H.J.%20Shin&amp;volume=16&amp;publication_year=2014&amp;pages=132-137&amp;pmid=24131075&amp;doi=10.3109/14764172.2013.854119&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B33-nutrients-15-02080">
<span class="label">33.</span><cite>Nomoto T., Iizaka S. Effect of an Oral Nutrition Supplement Containing Collagen Peptides on Stratum Corneum Hydration and Skin Elasticity in Hospitalized Older Adults: A Multicenter Open-label Randomized Controlled Study. Adv. Skin Wound Care. 2020;33:186191. doi: 10.1097/01.ASW.0000655492.40898.55.</cite> [<a href="https://doi.org/10.1097/01.ASW.0000655492.40898.55" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7328867/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32195722/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Adv.%20Skin%20Wound%20Care&amp;title=Effect%20of%20an%20Oral%20Nutrition%20Supplement%20Containing%20Collagen%20Peptides%20on%20Stratum%20Corneum%20Hydration%20and%20Skin%20Elasticity%20in%20Hospitalized%20Older%20Adults:%20A%20Multicenter%20Open-label%20Randomized%20Controlled%20Study&amp;author=T.%20Nomoto&amp;author=S.%20Iizaka&amp;volume=33&amp;publication_year=2020&amp;pages=186-191&amp;pmid=32195722&amp;doi=10.1097/01.ASW.0000655492.40898.55&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B34-nutrients-15-02080">
<span class="label">34.</span><cite>Inoue N., Sugihara F., Wang X. Ingestion of bioactive collagen hydrolysates enhance facial skin moisture and elasticity and reduce facial ageing signs in a randomised double-blind placebo-controlled clinical study. J. Sci. Food Agric. 2016;96:40774081. doi: 10.1002/jsfa.7606.</cite> [<a href="https://doi.org/10.1002/jsfa.7606" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26840887/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Sci.%20Food%20Agric.&amp;title=Ingestion%20of%20bioactive%20collagen%20hydrolysates%20enhance%20facial%20skin%20moisture%20and%20elasticity%20and%20reduce%20facial%20ageing%20signs%20in%20a%20randomised%20double-blind%20placebo-controlled%20clinical%20study&amp;author=N.%20Inoue&amp;author=F.%20Sugihara&amp;author=X.%20Wang&amp;volume=96&amp;publication_year=2016&amp;pages=4077-4081&amp;pmid=26840887&amp;doi=10.1002/jsfa.7606&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B35-nutrients-15-02080">
<span class="label">35.</span><cite>Schwartz S.R., Hammon K.A., Gafner A., Dahl A., Guttman N., Fong M., Schauss A.G. Novel Hydrolyzed Chicken Sternal Cartilage Extract Improves Facial Epidermis and Connective Tissue in Healthy Adult Females: A Randomized, Double-Blind, Placebo-Controlled Trial. Altern. Ther. Health Med. 2019;25:1229.</cite> [<a href="https://pubmed.ncbi.nlm.nih.gov/31221944/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Altern.%20Ther.%20Health%20Med.&amp;title=Novel%20Hydrolyzed%20Chicken%20Sternal%20Cartilage%20Extract%20Improves%20Facial%20Epidermis%20and%20Connective%20Tissue%20in%20Healthy%20Adult%20Females:%20A%20Randomized,%20Double-Blind,%20Placebo-Controlled%20Trial&amp;author=S.R.%20Schwartz&amp;author=K.A.%20Hammon&amp;author=A.%20Gafner&amp;author=A.%20Dahl&amp;author=N.%20Guttman&amp;volume=25&amp;publication_year=2019&amp;pages=12-29&amp;pmid=31221944&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B36-nutrients-15-02080">
<span class="label">36.</span><cite>Schwartz S.R., Park J. Ingestion of BioCell Collagen®, a novel hydrolyzed chicken sternal cartilage extract; enhanced blood microcirculation and reduced facial aging signs. Clin. Interv. Aging. 2012;7:267273. doi: 10.2147/CIA.S32836.</cite> [<a href="https://doi.org/10.2147/CIA.S32836" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3426261/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22956862/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Clin.%20Interv.%20Aging&amp;title=Ingestion%20of%20BioCell%20Collagen%C2%AE,%20a%20novel%20hydrolyzed%20chicken%20sternal%20cartilage%20extract;%20enhanced%20blood%20microcirculation%20and%20reduced%20facial%20aging%20signs&amp;author=S.R.%20Schwartz&amp;author=J.%20Park&amp;volume=7&amp;publication_year=2012&amp;pages=267-273&amp;pmid=22956862&amp;doi=10.2147/CIA.S32836&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B37-nutrients-15-02080">
<span class="label">37.</span><cite>Sangsuwan W., Asawanonda P. Four-weeks daily intake of oral collagen hydrolysate results in improved skin elasticity, especially in sun-exposed areas: A randomized, double-blind, placebo-controlled trial. J. Dermatol. Treat. 2021;32:991996. doi: 10.1080/09546634.2020.1725412.</cite> [<a href="https://doi.org/10.1080/09546634.2020.1725412" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32009486/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Dermatol.%20Treat.&amp;title=Four-weeks%20daily%20intake%20of%20oral%20collagen%20hydrolysate%20results%20in%20improved%20skin%20elasticity,%20especially%20in%20sun-exposed%20areas:%20A%20randomized,%20double-blind,%20placebo-controlled%20trial&amp;author=W.%20Sangsuwan&amp;author=P.%20Asawanonda&amp;volume=32&amp;publication_year=2021&amp;pages=991-996&amp;pmid=32009486&amp;doi=10.1080/09546634.2020.1725412&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B38-nutrients-15-02080">
<span class="label">38.</span><cite>Proksch E., Schunck M., Zague V., Segger D., Degwert J., Oesser S. Oral intake of specific bioactive collagen peptides reduces skin wrinkles and increases dermal matrix synthesis. Skin Pharmacol. Physiol. 2014;27:113119. doi: 10.1159/000355523.</cite> [<a href="https://doi.org/10.1159/000355523" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24401291/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Skin%20Pharmacol.%20Physiol.&amp;title=Oral%20intake%20of%20specific%20bioactive%20collagen%20peptides%20reduces%20skin%20wrinkles%20and%20increases%20dermal%20matrix%20synthesis&amp;author=E.%20Proksch&amp;author=M.%20Schunck&amp;author=V.%20Zague&amp;author=D.%20Segger&amp;author=J.%20Degwert&amp;volume=27&amp;publication_year=2014&amp;pages=113-119&amp;pmid=24401291&amp;doi=10.1159/000355523&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B39-nutrients-15-02080">
<span class="label">39.</span><cite>Yoon H.S., Cho H.H., Cho S., Lee S.R., Shin M.H., Chung J.H. Supplementating with dietary astaxanthin combined with collagen hydrolysate improves facial elasticity and decreases matrix metalloproteinase-1 and -12 expression: A comparative study with placebo. J. Med. Food. 2014;17:810816. doi: 10.1089/jmf.2013.3060.</cite> [<a href="https://doi.org/10.1089/jmf.2013.3060" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24955642/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Med.%20Food&amp;title=Supplementating%20with%20dietary%20astaxanthin%20combined%20with%20collagen%20hydrolysate%20improves%20facial%20elasticity%20and%20decreases%20matrix%20metalloproteinase-1%20and%20-12%20expression:%20A%20comparative%20study%20with%20placebo&amp;author=H.S.%20Yoon&amp;author=H.H.%20Cho&amp;author=S.%20Cho&amp;author=S.R.%20Lee&amp;author=M.H.%20Shin&amp;volume=17&amp;publication_year=2014&amp;pages=810-816&amp;pmid=24955642&amp;doi=10.1089/jmf.2013.3060&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B40-nutrients-15-02080">
<span class="label">40.</span><cite>Di Cerbo A., Laurino C., Palmieri B., Iannitti T. A dietary supplement improves facial photoaging and skin sebum, hydration and tonicity modulating serum fibronectin, neutrophil elastase 2, hyaluronic acid and carbonylated proteins. J. Photochem. Photobiol. B. 2015;144:94103. doi: 10.1016/j.jphotobiol.2014.12.025.</cite> [<a href="https://doi.org/10.1016/j.jphotobiol.2014.12.025" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25732262/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Photochem.%20Photobiol.%20B&amp;title=A%20dietary%20supplement%20improves%20facial%20photoaging%20and%20skin%20sebum,%20hydration%20and%20tonicity%20modulating%20serum%20fibronectin,%20neutrophil%20elastase%202,%20hyaluronic%20acid%20and%20carbonylated%20proteins&amp;author=A.%20Di%20Cerbo&amp;author=C.%20Laurino&amp;author=B.%20Palmieri&amp;author=T.%20Iannitti&amp;volume=144&amp;publication_year=2015&amp;pages=94-103&amp;pmid=25732262&amp;doi=10.1016/j.jphotobiol.2014.12.025&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B41-nutrients-15-02080">
<span class="label">41.</span><cite>Genovese L., Corbo A., Sibilla S. An Insight into the Changes in Skin Texture and Properties following Dietary Intervention with a Nutricosmeceutical Containing a Blend of Collagen Bioactive Peptides and Antioxidants. Skin Pharmacol. Physiol. 2017;30:146158. doi: 10.1159/000464470.</cite> [<a href="https://doi.org/10.1159/000464470" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28528342/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Skin%20Pharmacol.%20Physiol.&amp;title=An%20Insight%20into%20the%20Changes%20in%20Skin%20Texture%20and%20Properties%20following%20Dietary%20Intervention%20with%20a%20Nutricosmeceutical%20Containing%20a%20Blend%20of%20Collagen%20Bioactive%20Peptides%20and%20Antioxidants&amp;author=L.%20Genovese&amp;author=A.%20Corbo&amp;author=S.%20Sibilla&amp;volume=30&amp;publication_year=2017&amp;pages=146-158&amp;pmid=28528342&amp;doi=10.1159/000464470&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B42-nutrients-15-02080">
<span class="label">42.</span><cite>Czajka A., Kania E.M., Genovese L., Corbo A., Merone G., Luci C., Sibilla S. Daily oral supplementation with collagen peptides combined with vitamins and other bioactive compounds improves skin elasticity and has a beneficial effect on joint and general wellbeing. Nutr. Res. 2018;57:97108. doi: 10.1016/j.nutres.2018.06.001.</cite> [<a href="https://doi.org/10.1016/j.nutres.2018.06.001" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30122200/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nutr.%20Res.&amp;title=Daily%20oral%20supplementation%20with%20collagen%20peptides%20combined%20with%20vitamins%20and%20other%20bioactive%20compounds%20improves%20skin%20elasticity%20and%20has%20a%20beneficial%20effect%20on%20joint%20and%20general%20wellbeing&amp;author=A.%20Czajka&amp;author=E.M.%20Kania&amp;author=L.%20Genovese&amp;author=A.%20Corbo&amp;author=G.%20Merone&amp;volume=57&amp;publication_year=2018&amp;pages=97-108&amp;pmid=30122200&amp;doi=10.1016/j.nutres.2018.06.001&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B43-nutrients-15-02080">
<span class="label">43.</span><cite>Kim D.-U., Chung H.-C., Choi J., Sakai Y., Lee B.-Y. Oral Intake of Low-Molecular-Weight Collagen Peptide Improves Hydration, Elasticity and Wrinkling in Human Skin: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients. 2018;10:826. doi: 10.3390/nu10070826.</cite> [<a href="https://doi.org/10.3390/nu10070826" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC6073484/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29949889/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nutrients&amp;title=Oral%20Intake%20of%20Low-Molecular-Weight%20Collagen%20Peptide%20Improves%20Hydration,%20Elasticity%20and%20Wrinkling%20in%20Human%20Skin:%20A%20Randomized,%20Double-Blind,%20Placebo-Controlled%20Study&amp;author=D.-U.%20Kim&amp;author=H.-C.%20Chung&amp;author=J.%20Choi&amp;author=Y.%20Sakai&amp;author=B.-Y.%20Lee&amp;volume=10&amp;publication_year=2018&amp;pages=826&amp;pmid=29949889&amp;doi=10.3390/nu10070826&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B44-nutrients-15-02080">
<span class="label">44.</span><cite>Zmitek K., Zmitek J., Butina M.R., Pogacnik T. Effects of a Combination of Water-Soluble CoenzymeQ10 and Collagen on Skin Parameters and Condition:Results of a Randomised, Placebo-Controlled, Double-Blind Study. Nutrients. 2020;12:618. doi: 10.3390/nu12030618.</cite> [<a href="https://doi.org/10.3390/nu12030618" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7146335/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32120787/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nutrients&amp;title=Effects%20of%20a%20Combination%20of%20Water-Soluble%20CoenzymeQ10%20and%20Collagen%20on%20Skin%20Parameters%20and%20Condition:Results%20of%20a%20Randomised,%20Placebo-Controlled,%20Double-Blind%20Study&amp;author=K.%20Zmitek&amp;author=J.%20Zmitek&amp;author=M.R.%20Butina&amp;author=T.%20Pogacnik&amp;volume=12&amp;publication_year=2020&amp;pages=618&amp;pmid=32120787&amp;doi=10.3390/nu12030618&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B45-nutrients-15-02080">
<span class="label">45.</span><cite>Laing S., Bielfeldt S., Ehrenberg C., Wilhelm K.P. A Dermonutrient Containing Special Collagen Peptides Improves Skin Structure and Function: A Randomized, Placebo-Controlled, Triple-Blind Trial Using Confocal Laser Scanning Microscopy on the Cosmetic Effects and Tolerance of a Drinkable Collagen Supplement. J. Med. Food. 2020;23:147152. doi: 10.1089/jmf.2019.0197.</cite> [<a href="https://doi.org/10.1089/jmf.2019.0197" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7041324/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32017646/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Med.%20Food&amp;title=A%20Dermonutrient%20Containing%20Special%20Collagen%20Peptides%20Improves%20Skin%20Structure%20and%20Function:%20A%20Randomized,%20Placebo-Controlled,%20Triple-Blind%20Trial%20Using%20Confocal%20Laser%20Scanning%20Microscopy%20on%20the%20Cosmetic%20Effects%20and%20Tolerance%20of%20a%20Drinkable%20Collagen%20Supplement&amp;author=S.%20Laing&amp;author=S.%20Bielfeldt&amp;author=C.%20Ehrenberg&amp;author=K.P.%20Wilhelm&amp;volume=23&amp;publication_year=2020&amp;pages=147-152&amp;pmid=32017646&amp;doi=10.1089/jmf.2019.0197&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B46-nutrients-15-02080">
<span class="label">46.</span><cite>Lin P., Alexander R.A., Liang C.H., Liu C., Lin Y.H., Lin Y.H., Chan L.P., Kuan C.M. Collagen formula with Djulis for improvement of skin hydration, brightness, texture, crows feet, and collagen content: A double-blind, randomized, placebo-controlled trial. J. Cosmet. Dermatol. 2021;20:188194. doi: 10.1111/jocd.13500.</cite> [<a href="https://doi.org/10.1111/jocd.13500" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32530124/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Cosmet.%20Dermatol.&amp;title=Collagen%20formula%20with%20Djulis%20for%20improvement%20of%20skin%20hydration,%20brightness,%20texture,%20crow%E2%80%99s%20feet,%20and%20collagen%20content:%20A%20double-blind,%20randomized,%20placebo-controlled%20trial&amp;author=P.%20Lin&amp;author=R.A.%20Alexander&amp;author=C.H.%20Liang&amp;author=C.%20Liu&amp;author=Y.H.%20Lin&amp;volume=20&amp;publication_year=2021&amp;pages=188-194&amp;pmid=32530124&amp;doi=10.1111/jocd.13500&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B47-nutrients-15-02080">
<span class="label">47.</span><cite>Evans M., Lewis E.D., Zakaria N., Pelipyagina T., Guthrie N. A randomized, triple-blind, placebo-controlled, parallel study to evaluate the efficacy of a freshwater marine collagen on skin wrinkles and elasticity. J. Cosmet. Dermatol. 2021;20:825834. doi: 10.1111/jocd.13676.</cite> [<a href="https://doi.org/10.1111/jocd.13676" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC8176521/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32799362/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Cosmet.%20Dermatol.&amp;title=A%20randomized,%20triple-blind,%20placebo-controlled,%20parallel%20study%20to%20evaluate%20the%20efficacy%20of%20a%20freshwater%20marine%20collagen%20on%20skin%20wrinkles%20and%20elasticity&amp;author=M.%20Evans&amp;author=E.D.%20Lewis&amp;author=N.%20Zakaria&amp;author=T.%20Pelipyagina&amp;author=N.%20Guthrie&amp;volume=20&amp;publication_year=2021&amp;pages=825-834&amp;pmid=32799362&amp;doi=10.1111/jocd.13676&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B48-nutrients-15-02080">
<span class="label">48.</span><cite>Tak Y.J., Shin D.K., Kim A.H., Kim J.I., Lee Y.L., Ko H.C., Kim Y.W., Lee S.Y. Effect of Collagen Tripeptide and Adjusting for Climate Change on Skin Hydration in Middle-Aged Women: A Randomized, Double-Blind, Placebo-Controlled Trial. Front. Med. 2020;7:608903. doi: 10.3389/fmed.2020.608903.</cite> [<a href="https://doi.org/10.3389/fmed.2020.608903" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7839319/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33521019/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Front.%20Med.&amp;title=Effect%20of%20Collagen%20Tripeptide%20and%20Adjusting%20for%20Climate%20Change%20on%20Skin%20Hydration%20in%20Middle-Aged%20Women:%20A%20Randomized,%20Double-Blind,%20Placebo-Controlled%20Trial&amp;author=Y.J.%20Tak&amp;author=D.K.%20Shin&amp;author=A.H.%20Kim&amp;author=J.I.%20Kim&amp;author=Y.L.%20Lee&amp;volume=7&amp;publication_year=2020&amp;pages=608903&amp;pmid=33521019&amp;doi=10.3389/fmed.2020.608903&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B49-nutrients-15-02080">
<span class="label">49.</span><cite>Miyanaga M., Uchiyama T., Motoyama A., Ochiai N., Ueda O., Ogo M. Oral Supplementation of Collagen Peptides Improves Skin Hydration by Increasing the Natural Moisturizing Factor Content in the Stratum Corneum: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Skin Pharmacol. Physiol. 2021;34:115127. doi: 10.1159/000513988.</cite> [<a href="https://doi.org/10.1159/000513988" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33774639/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Skin%20Pharmacol.%20Physiol.&amp;title=Oral%20Supplementation%20of%20Collagen%20Peptides%20Improves%20Skin%20Hydration%20by%20Increasing%20the%20Natural%20Moisturizing%20Factor%20Content%20in%20the%20Stratum%20Corneum:%20A%20Randomized,%20Double-Blind,%20Placebo-Controlled%20Clinical%20Trial&amp;author=M.%20Miyanaga&amp;author=T.%20Uchiyama&amp;author=A.%20Motoyama&amp;author=N.%20Ochiai&amp;author=O.%20Ueda&amp;volume=34&amp;publication_year=2021&amp;pages=115-127&amp;pmid=33774639&amp;doi=10.1159/000513988&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B50-nutrients-15-02080">
<span class="label">50.</span><cite>Jung K., Kim S.H., Joo K.M., Lim S.H., Shin J.H., Roh J., Kim E., Park C.W., Kim W. Oral Intake of Enzymatically Decomposed AP Collagen Peptides Improves Skin Moisture and Ceramide and Natural Moisturizing Factor Contents in the Stratum Corneum. Nutrients. 2021;13:4372. doi: 10.3390/nu13124372.</cite> [<a href="https://doi.org/10.3390/nu13124372" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC8707759/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/34959923/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nutrients&amp;title=Oral%20Intake%20of%20Enzymatically%20Decomposed%20AP%20Collagen%20Peptides%20Improves%20Skin%20Moisture%20and%20Ceramide%20and%20Natural%20Moisturizing%20Factor%20Contents%20in%20the%20Stratum%20Corneum&amp;author=K.%20Jung&amp;author=S.H.%20Kim&amp;author=K.M.%20Joo&amp;author=S.H.%20Lim&amp;author=J.H.%20Shin&amp;volume=13&amp;publication_year=2021&amp;pages=4372&amp;pmid=34959923&amp;doi=10.3390/nu13124372&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B51-nutrients-15-02080">
<span class="label">51.</span><cite>Bianchi F.M., Angelinetta C., Rizzi G., Praticò A., Villa R. Evaluation of the Efficacy of a Hydrolyzed Collagen Supplement for Improving Skin Moisturization, Smoothness, and Wrinkles. J. Clin. Aesthetic Dermatol. 2022;15:48.</cite> [<a href="/articles/PMC8944283/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/35342502/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Clin.%20Aesthetic%20Dermatol.&amp;title=Evaluation%20of%20the%20Efficacy%20of%20a%20Hydrolyzed%20Collagen%20Supplement%20for%20Improving%20Skin%20Moisturization,%20Smoothness,%20and%20Wrinkles&amp;author=F.M.%20Bianchi&amp;author=C.%20Angelinetta&amp;author=G.%20Rizzi&amp;author=A.%20Pratic%C3%B2&amp;author=R.%20Villa&amp;volume=15&amp;publication_year=2022&amp;pages=48&amp;pmid=35342502&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B52-nutrients-15-02080">
<span class="label">52.</span><cite>Baumann L. Skin ageing and its treatment. J. Pathol. 2007;211:241251. doi: 10.1002/path.2098.</cite> [<a href="https://doi.org/10.1002/path.2098" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/17200942/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Pathol.&amp;title=Skin%20ageing%20and%20its%20treatment&amp;author=L.%20Baumann&amp;volume=211&amp;publication_year=2007&amp;pages=241-251&amp;pmid=17200942&amp;doi=10.1002/path.2098&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B53-nutrients-15-02080">
<span class="label">53.</span><cite>Meyer L.J., Stern R. Age-dependent changes of hyaluronan in human skin. J. Investig. Dermatol. 1994;102:385389. doi: 10.1111/1523-1747.ep12371800.</cite> [<a href="https://doi.org/10.1111/1523-1747.ep12371800" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/8120424/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Investig.%20Dermatol.&amp;title=Age-dependent%20changes%20of%20hyaluronan%20in%20human%20skin&amp;author=L.J.%20Meyer&amp;author=R.%20Stern&amp;volume=102&amp;publication_year=1994&amp;pages=385-389&amp;pmid=8120424&amp;doi=10.1111/1523-1747.ep12371800&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B54-nutrients-15-02080">
<span class="label">54.</span><cite>Ohara H., Iida H., Ito K., Takeuchi Y., Nomura Y. Effects of Pro-Hyp, a collagen hydrolysate-derived peptide, on hyaluronic acid synthesis using in vitro cultured synovium cells and oral ingestion of collagen hydrolysates in a guinea pig model of osteoarthritis. Biosci. Biotechnol. Biochem. 2010;74:20962099. doi: 10.1271/bbb.100193.</cite> [<a href="https://doi.org/10.1271/bbb.100193" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20944430/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Biosci.%20Biotechnol.%20Biochem.&amp;title=Effects%20of%20Pro-Hyp,%20a%20collagen%20hydrolysate-derived%20peptide,%20on%20hyaluronic%20acid%20synthesis%20using%20in%20vitro%20cultured%20synovium%20cells%20and%20oral%20ingestion%20of%20collagen%20hydrolysates%20in%20a%20guinea%20pig%20model%20of%20osteoarthritis&amp;author=H.%20Ohara&amp;author=H.%20Iida&amp;author=K.%20Ito&amp;author=Y.%20Takeuchi&amp;author=Y.%20Nomura&amp;volume=74&amp;publication_year=2010&amp;pages=2096-2099&amp;pmid=20944430&amp;doi=10.1271/bbb.100193&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B55-nutrients-15-02080">
<span class="label">55.</span><cite>Cao C., Xiao Z., Tong H., Liu Y., Wu Y., Ge C. Oral Intake of Chicken Bone Collagen Peptides Anti-Skin Aging in Mice by Regulating Collagen Degradation and Synthesis, Inhibiting Inflammation and Activating Lysosomes. Nutrients. 2022;14:1622. doi: 10.3390/nu14081622.</cite> [<a href="https://doi.org/10.3390/nu14081622" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC9032939/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/35458184/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nutrients&amp;title=Oral%20Intake%20of%20Chicken%20Bone%20Collagen%20Peptides%20Anti-Skin%20Aging%20in%20Mice%20by%20Regulating%20Collagen%20Degradation%20and%20Synthesis,%20Inhibiting%20Inflammation%20and%20Activating%20Lysosomes&amp;author=C.%20Cao&amp;author=Z.%20Xiao&amp;author=H.%20Tong&amp;author=Y.%20Liu&amp;author=Y.%20Wu&amp;volume=14&amp;publication_year=2022&amp;pages=1622&amp;pmid=35458184&amp;doi=10.3390/nu14081622&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B56-nutrients-15-02080">
<span class="label">56.</span><cite>Sun Q., Wu J., Qian G., Cheng H. Effectiveness of Dietary Supplement for Skin Moisturizing in Healthy Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front. Nutr. 2022;9:895192. doi: 10.3389/fnut.2022.895192.</cite> [<a href="https://doi.org/10.3389/fnut.2022.895192" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC9201759/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/35719159/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Front.%20Nutr.&amp;title=Effectiveness%20of%20Dietary%20Supplement%20for%20Skin%20Moisturizing%20in%20Healthy%20Adults:%20A%20Systematic%20Review%20and%20Meta-Analysis%20of%20Randomized%20Controlled%20Trials&amp;author=Q.%20Sun&amp;author=J.%20Wu&amp;author=G.%20Qian&amp;author=H.%20Cheng&amp;volume=9&amp;publication_year=2022&amp;pages=895192&amp;pmid=35719159&amp;doi=10.3389/fnut.2022.895192&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B57-nutrients-15-02080">
<span class="label">57.</span><cite>Karim A.A., Bhat R. Fish gelatin: Properties, challenges, and prospects as an alternative to mammalian gelatins. Food Hydrocoll. 2009;23:563576. doi: 10.1016/j.foodhyd.2008.07.002.</cite> [<a href="https://doi.org/10.1016/j.foodhyd.2008.07.002" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Food%20Hydrocoll.&amp;title=Fish%20gelatin:%20Properties,%20challenges,%20and%20prospects%20as%20an%20alternative%20to%20mammalian%20gelatins&amp;author=A.A.%20Karim&amp;author=R.%20Bhat&amp;volume=23&amp;publication_year=2009&amp;pages=563-576&amp;doi=10.1016/j.foodhyd.2008.07.002&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B58-nutrients-15-02080">
<span class="label">58.</span><cite>Nagai T., Suzuki N. Isolation of collagen from fish waste material—Skin, bone and fins. Food Chem. 2000;68:277281. doi: 10.1016/S0308-8146(99)00188-0.</cite> [<a href="https://doi.org/10.1016/S0308-8146(99)00188-0" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Food%20Chem.&amp;title=Isolation%20of%20collagen%20from%20fish%20waste%20material%E2%80%94Skin,%20bone%20and%20fins&amp;author=T.%20Nagai&amp;author=N.%20Suzuki&amp;volume=68&amp;publication_year=2000&amp;pages=277-281&amp;doi=10.1016/S0308-8146(99)00188-0&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B59-nutrients-15-02080">
<span class="label">59.</span><cite>Exposito J.Y., Valcourt U., Cluzel C., Lethias C. The fibrillar collagen family. Int. J. Mol. Sci. 2010;11:407426. doi: 10.3390/ijms11020407.</cite> [<a href="https://doi.org/10.3390/ijms11020407" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2852846/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20386646/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Int.%20J.%20Mol.%20Sci.&amp;title=The%20fibrillar%20collagen%20family&amp;author=J.Y.%20Exposito&amp;author=U.%20Valcourt&amp;author=C.%20Cluzel&amp;author=C.%20Lethias&amp;volume=11&amp;publication_year=2010&amp;pages=407-426&amp;pmid=20386646&amp;doi=10.3390/ijms11020407&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B60-nutrients-15-02080">
<span class="label">60.</span><cite>Gelse K., Poschl E., Aigner T. Collagens—Structure, function, and biosynthesis. Adv. Drug Deliv. Rev. 2003;55:15311546. doi: 10.1016/j.addr.2003.08.002.</cite> [<a href="https://doi.org/10.1016/j.addr.2003.08.002" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/14623400/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Adv.%20Drug%20Deliv.%20Rev.&amp;title=Collagens%E2%80%94Structure,%20function,%20and%20biosynthesis&amp;author=K.%20Gelse&amp;author=E.%20Poschl&amp;author=T.%20Aigner&amp;volume=55&amp;publication_year=2003&amp;pages=1531-1546&amp;pmid=14623400&amp;doi=10.1016/j.addr.2003.08.002&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B61-nutrients-15-02080">
<span class="label">61.</span><cite>Krieg T., Aumailley M. The extracellular matrix of the dermis: Flexible structures with dynamic functions. Exp. Dermatol. 2011;20:689695. doi: 10.1111/j.1600-0625.2011.01313.x.</cite> [<a href="https://doi.org/10.1111/j.1600-0625.2011.01313.x" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/21615511/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Exp.%20Dermatol.&amp;title=The%20extracellular%20matrix%20of%20the%20dermis:%20Flexible%20structures%20with%20dynamic%20functions&amp;author=T.%20Krieg&amp;author=M.%20Aumailley&amp;volume=20&amp;publication_year=2011&amp;pages=689-695&amp;pmid=21615511&amp;doi=10.1111/j.1600-0625.2011.01313.x&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B62-nutrients-15-02080">
<span class="label">62.</span><cite>Song H., Zhang L., Luo Y., Zhang S., Li B. Effects of collagen peptides intake on skin ageing and platelet release in chronologically aged mice revealed by cytokine array analysis. J. Cell. Mol. Med. 2018;22:277288. doi: 10.1111/jcmm.13317.</cite> [<a href="https://doi.org/10.1111/jcmm.13317" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5742730/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28922541/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Cell.%20Mol.%20Med.&amp;title=Effects%20of%20collagen%20peptides%20intake%20on%20skin%20ageing%20and%20platelet%20release%20in%20chronologically%20aged%20mice%20revealed%20by%20cytokine%20array%20analysis&amp;author=H.%20Song&amp;author=L.%20Zhang&amp;author=Y.%20Luo&amp;author=S.%20Zhang&amp;author=B.%20Li&amp;volume=22&amp;publication_year=2018&amp;pages=277-288&amp;pmid=28922541&amp;doi=10.1111/jcmm.13317&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B63-nutrients-15-02080">
<span class="label">63.</span><cite>De Luca C., Mikhal E.V., Suprun M.V., Papacharalambous M., Truhanov A.I., Korkina L.G. Skin Antiageing and Systemic Redox Effects of Supplementation with Marine Collagen Peptides and Plant-Derived Antioxidants: A Single-Blind Case-Control Clinical Study. Oxid. Med. Cell. Longev. 2016;2016:4389410. doi: 10.1155/2016/4389410.</cite> [<a href="https://doi.org/10.1155/2016/4389410" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC4745978/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26904164/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Oxid.%20Med.%20Cell.%20Longev.&amp;title=Skin%20Antiageing%20and%20Systemic%20Redox%20Effects%20of%20Supplementation%20with%20Marine%20Collagen%20Peptides%20and%20Plant-Derived%20Antioxidants:%20A%20Single-Blind%20Case-Control%20Clinical%20Study&amp;author=C.%20De%20Luca&amp;author=E.V.%20Mikhal&amp;author=M.V.%20Suprun&amp;author=M.%20Papacharalambous&amp;author=A.I.%20Truhanov&amp;volume=2016&amp;publication_year=2016&amp;pages=4389410&amp;pmid=26904164&amp;doi=10.1155/2016/4389410&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B64-nutrients-15-02080">
<span class="label">64.</span><cite>Campos P.M., Melo M.O., César F.C.S. Topical application and oral supplementation of peptides in the improvement of skin viscoelasticity and density. J. Cosmet. Dermatol. 2019;18:16931699. doi: 10.1111/jocd.12893.</cite> [<a href="https://doi.org/10.1111/jocd.12893" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30834689/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Cosmet.%20Dermatol.&amp;title=Topical%20application%20and%20oral%20supplementation%20of%20peptides%20in%20the%20improvement%20of%20skin%20viscoelasticity%20and%20density&amp;author=P.M.%20Campos&amp;author=M.O.%20Melo&amp;author=F.C.S.%20C%C3%A9sar&amp;volume=18&amp;publication_year=2019&amp;pages=1693-1699&amp;pmid=30834689&amp;doi=10.1111/jocd.12893&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B65-nutrients-15-02080">
<span class="label">65.</span><cite>Lee Y.I., Lee S.G., Kim E., Jung I., Suk J., Kim J., Lee J.H. Anti-aging effect of an oral disintegrating collagen film: A prospective, single-arm study. Int. J. Dermatol. 2022;61:5461. doi: 10.1111/ijd.15675.</cite> [<a href="https://doi.org/10.1111/ijd.15675" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/34105764/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Int.%20J.%20Dermatol.&amp;title=Anti-aging%20effect%20of%20an%20oral%20disintegrating%20collagen%20film:%20A%20prospective,%20single-arm%20study&amp;author=Y.I.%20Lee&amp;author=S.G.%20Lee&amp;author=E.%20Kim&amp;author=I.%20Jung&amp;author=J.%20Suk&amp;volume=61&amp;publication_year=2022&amp;pages=54-61&amp;pmid=34105764&amp;doi=10.1111/ijd.15675&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B66-nutrients-15-02080">
<span class="label">66.</span><cite>Song H., Zhang S., Zhang L., Li B. Effect of Orally Administered Collagen Peptides from Bovine Bone on Skin Aging in Chronologically Aged Mice. Nutrients. 2017;9:1209. doi: 10.3390/nu9111209.</cite> [<a href="https://doi.org/10.3390/nu9111209" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5707681/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29099747/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nutrients&amp;title=Effect%20of%20Orally%20Administered%20Collagen%20Peptides%20from%20Bovine%20Bone%20on%20Skin%20Aging%20in%20Chronologically%20Aged%20Mice&amp;author=H.%20Song&amp;author=S.%20Zhang&amp;author=L.%20Zhang&amp;author=B.%20Li&amp;volume=9&amp;publication_year=2017&amp;pages=1209&amp;pmid=29099747&amp;doi=10.3390/nu9111209&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B67-nutrients-15-02080">
<span class="label">67.</span><cite>Addor F.A.S., Vieira J.C., Melo C.S.A. Improvement of dermal parameters in aged skin after oral use of a nutrient supplement. Clin. Cosmet. Investig. Dermatol. 2018;11:195201. doi: 10.2147/CCID.S150269.</cite> [<a href="https://doi.org/10.2147/CCID.S150269" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5933363/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29750046/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Clin.%20Cosmet.%20Investig.%20Dermatol.&amp;title=Improvement%20of%20dermal%20parameters%20in%20aged%20skin%20after%20oral%20use%20of%20a%20nutrient%20supplement&amp;author=F.A.S.%20Addor&amp;author=J.C.%20Vieira&amp;author=C.S.A.%20Melo&amp;volume=11&amp;publication_year=2018&amp;pages=195-201&amp;pmid=29750046&amp;doi=10.2147/CCID.S150269&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B68-nutrients-15-02080">
<span class="label">68.</span><cite>Zhang Z., Zhu H., Zheng Y., Zhang L., Wang X., Luo Z., Tang J., Lin L., Du Z., Dong C. The effects and mechanism of collagen peptide and elastin peptide on skin aging induced by D-galactose combined with ultraviolet radiation. J. Photochem. Photobiol. B. 2020;210:111964. doi: 10.1016/j.jphotobiol.2020.111964.</cite> [<a href="https://doi.org/10.1016/j.jphotobiol.2020.111964" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/32717457/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Photochem.%20Photobiol.%20B&amp;title=The%20effects%20and%20mechanism%20of%20collagen%20peptide%20and%20elastin%20peptide%20on%20skin%20aging%20induced%20by%20D-galactose%20combined%20with%20ultraviolet%20radiation&amp;author=Z.%20Zhang&amp;author=H.%20Zhu&amp;author=Y.%20Zheng&amp;author=L.%20Zhang&amp;author=X.%20Wang&amp;volume=210&amp;publication_year=2020&amp;pages=111964&amp;pmid=32717457&amp;doi=10.1016/j.jphotobiol.2020.111964&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B69-nutrients-15-02080">
<span class="label">69.</span><cite>Koopman R., Crombach N., Gijsen A.P., Walrand S., Fauquant J., Kies A.K., Lemosquet S., Saris W.H., Boirie Y., van Loon L.J. Ingestion of a protein hydrolysate is accompanied by an accelerated in vivo digestion and absorption rate when compared with its intact protein. Am. J. Clin. Nutr. 2009;90:106115. doi: 10.3945/ajcn.2009.27474.</cite> [<a href="https://doi.org/10.3945/ajcn.2009.27474" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19474134/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Am.%20J.%20Clin.%20Nutr.&amp;title=Ingestion%20of%20a%20protein%20hydrolysate%20is%20accompanied%20by%20an%20accelerated%20in%20vivo%20digestion%20and%20absorption%20rate%20when%20compared%20with%20its%20intact%20protein&amp;author=R.%20Koopman&amp;author=N.%20Crombach&amp;author=A.P.%20Gijsen&amp;author=S.%20Walrand&amp;author=J.%20Fauquant&amp;volume=90&amp;publication_year=2009&amp;pages=106-115&amp;pmid=19474134&amp;doi=10.3945/ajcn.2009.27474&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B70-nutrients-15-02080">
<span class="label">70.</span><cite>Yazaki M., Ito Y., Yamada M., Goulas S., Teramoto S., Nakaya M.-A., Ohno S., Yamaguchi K. Oral Ingestion of Collagen Hydrolysate Leads to the Transportation of Highly Concentrated Gly-Pro-Hyp and Its Hydrolyzed Form of Pro-Hyp into the Bloodstream and Skin. J. Agric. Food Chem. 2017;65:23152322. doi: 10.1021/acs.jafc.6b05679.</cite> [<a href="https://doi.org/10.1021/acs.jafc.6b05679" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28244315/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Agric.%20Food%20Chem.&amp;title=Oral%20Ingestion%20of%20Collagen%20Hydrolysate%20Leads%20to%20the%20Transportation%20of%20Highly%20Concentrated%20Gly-Pro-Hyp%20and%20Its%20Hydrolyzed%20Form%20of%20Pro-Hyp%20into%20the%20Bloodstream%20and%20Skin&amp;author=M.%20Yazaki&amp;author=Y.%20Ito&amp;author=M.%20Yamada&amp;author=S.%20Goulas&amp;author=S.%20Teramoto&amp;volume=65&amp;publication_year=2017&amp;pages=2315-2322&amp;pmid=28244315&amp;doi=10.1021/acs.jafc.6b05679&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B71-nutrients-15-02080">
<span class="label">71.</span><cite>Watanabe-Kamiyama M., Shimizu M., Kamiyama S., Taguchi Y., Sone H., Morimatsu F., Shirakawa H., Furukawa Y., Komai M. Absorption and effectiveness of orally administered low molecular weight collagen hydrolysate in rats. J. Agric. Food Chem. 2010;58:835841. doi: 10.1021/jf9031487.</cite> [<a href="https://doi.org/10.1021/jf9031487" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19957932/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Agric.%20Food%20Chem.&amp;title=Absorption%20and%20effectiveness%20of%20orally%20administered%20low%20molecular%20weight%20collagen%20hydrolysate%20in%20rats&amp;author=M.%20Watanabe-Kamiyama&amp;author=M.%20Shimizu&amp;author=S.%20Kamiyama&amp;author=Y.%20Taguchi&amp;author=H.%20Sone&amp;volume=58&amp;publication_year=2010&amp;pages=835-841&amp;pmid=19957932&amp;doi=10.1021/jf9031487&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B72-nutrients-15-02080">
<span class="label">72.</span><cite>Matsumoto H., Ohara H., Itoh K., Nakamura Y., Takahashi S. Clinical effects of fish type I collagen hydrolysate on skin properties. ITE Lett. 2006;7:386390.</cite> [<a href="https://scholar.google.com/scholar_lookup?journal=ITE%20Lett.&amp;title=Clinical%20effects%20of%20fish%20type%20I%20collagen%20hydrolysate%20on%20skin%20properties&amp;author=H.%20Matsumoto&amp;author=H.%20Ohara&amp;author=K.%20Itoh&amp;author=Y.%20Nakamura&amp;author=S.%20Takahashi&amp;volume=7&amp;publication_year=2006&amp;pages=386-390&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B73-nutrients-15-02080">
<span class="label">73.</span><cite>Gref R., Deloménie C., Maksimenko A., Gouadon E., Percoco G., Lati E., Desmaële D., Zouhiri F., Couvreur P. Vitamin C-squalene bioconjugate promotes epidermal thickening and collagen production in human skin. Sci. Rep. 2020;10:16883. doi: 10.1038/s41598-020-72704-1.</cite> [<a href="https://doi.org/10.1038/s41598-020-72704-1" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC7547010/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/33037252/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Sci.%20Rep.&amp;title=Vitamin%20C-squalene%20bioconjugate%20promotes%20epidermal%20thickening%20and%20collagen%20production%20in%20human%20skin&amp;author=R.%20Gref&amp;author=C.%20Delom%C3%A9nie&amp;author=A.%20Maksimenko&amp;author=E.%20Gouadon&amp;author=G.%20Percoco&amp;volume=10&amp;publication_year=2020&amp;pages=16883&amp;pmid=33037252&amp;doi=10.1038/s41598-020-72704-1&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B74-nutrients-15-02080">
<span class="label">74.</span><cite>Polcz M.E., Barbul A. The Role of Vitamin A in Wound Healing. Nutr. Clin. Pract. 2019;34:695700. doi: 10.1002/ncp.10376.</cite> [<a href="https://doi.org/10.1002/ncp.10376" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31389093/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nutr.%20Clin.%20Pract.&amp;title=The%20Role%20of%20Vitamin%20A%20in%20Wound%20Healing&amp;author=M.E.%20Polcz&amp;author=A.%20Barbul&amp;volume=34&amp;publication_year=2019&amp;pages=695-700&amp;pmid=31389093&amp;doi=10.1002/ncp.10376&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B75-nutrients-15-02080">
<span class="label">75.</span><cite>Zinder R., Cooley R., Vlad L.G., Molnar J.A. Vitamin A and Wound Healing. Nutr. Clin. Pract. 2019;34:839849. doi: 10.1002/ncp.10420.</cite> [<a href="https://doi.org/10.1002/ncp.10420" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31697447/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nutr.%20Clin.%20Pract.&amp;title=Vitamin%20A%20and%20Wound%20Healing&amp;author=R.%20Zinder&amp;author=R.%20Cooley&amp;author=L.G.%20Vlad&amp;author=J.A.%20Molnar&amp;volume=34&amp;publication_year=2019&amp;pages=839-849&amp;pmid=31697447&amp;doi=10.1002/ncp.10420&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
<li id="B76-nutrients-15-02080">
<span class="label">76.</span><cite>Blair M.J., Jones J.D., Woessner A.E., Quinn K.P. Skin Structure-Function Relationships and the Wound Healing Response to Intrinsic Aging. Adv. Wound Care. 2020;9:127143. doi: 10.1089/wound.2019.1021.</cite> [<a href="https://doi.org/10.1089/wound.2019.1021" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC6985772/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31993254/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Adv.%20Wound%20Care&amp;title=Skin%20Structure-Function%20Relationships%20and%20the%20Wound%20Healing%20Response%20to%20Intrinsic%20Aging&amp;author=M.J.%20Blair&amp;author=J.D.%20Jones&amp;author=A.E.%20Woessner&amp;author=K.P.%20Quinn&amp;volume=9&amp;publication_year=2020&amp;pages=127-143&amp;pmid=31993254&amp;doi=10.1089/wound.2019.1021&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li>
</ul></section></section><section id="_ad93_" lang="en" class="associated-data"><h2 class="pmc_sec_title" data-anchor-id="_ad93_"><a id="_ad93_-anchor" data-anchor-id="_ad93_" class="usa-anchor"></a>Associated Data</h2>
<p class="font-secondary"><em>This section collects any data citations, data availability statements, or supplementary materials included in this article.</em></p>
<section id="_adsm93_" lang="en" class="supplementary-materials"><h3 class="pmc_sec_title">Supplementary Materials</h3>
<section class="sm xbox font-sm" id="db_ds_supplementary-material1_reqid_"><div class="media p"><div class="caption">
<a href="/articles/instance/10180699/bin/nutrients-15-02080-s001.zip" data-ga-action="click_feat_suppl" class="usa-link">Click here for additional data file.</a><sup> (117.3KB, zip) </sup>
</div></div></section></section><section id="_adda93_" lang="en" class="data-availability-statement"><h3 class="pmc_sec_title">Data Availability Statement</h3>
<p>Data will be made available on reasonable request.</p></section></section></section><footer class="p courtesy-note font-secondary font-sm text-center"><hr class="headless">
<p>Articles from Nutrients are provided here courtesy of <strong>Multidisciplinary Digital Publishing Institute (MDPI)</strong></p></footer></section>
</div>
</div></body></html>

View File

@ -0,0 +1,970 @@
<meta charset='utf-8'>
<base target='_blank'>
<style>
body{font-family:system-ui,sans-serif;max-width:50rem;margin:2rem auto;line-height:1.6;padding:1rem}
img,iframe{max-width:100%}
.post-content{background:#f9f9f9;padding:1rem;border-radius:5px;margin:1rem 0}
.archive-header{background:#f0f8ff;border:1px solid #e0e0e0;border-radius:5px;padding:0.75rem;margin-bottom:1rem;font-size:0.9rem}
.archive-info{margin-bottom:0.5rem;color:#666}
.archive-source{color:#666}
.archive-header a{color:#007acc;text-decoration:none}
.archive-header a:hover{text-decoration:underline}
@media (prefers-color-scheme: dark) {
.archive-header{background:#1a1a2e;border-color:#333;color:#e0e0e0}
.archive-info, .archive-source{color:#ccc}
.archive-header a{color:#66b3ff}
}
</style>
<div class="archive-header">
<div class="archive-info">
<strong>📄 Archived:</strong> 2025-08-31 11:55:43 UTC
</div>
<div class="archive-source">
<strong>🔗 Source:</strong> <a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC11762834">https://pmc.ncbi.nlm.nih.gov/articles/PMC11762834</a>
</div>
</div>
<script>
// Archive metadata for cache management
window.archiveData = {
url: 'https://pmc.ncbi.nlm.nih.gov/articles/PMC11762834',
archivedAt: "2025-08-31T11:55:43.274504+00:00Z",
timestamp: 1756641343274
};
</script>
<hr>
<h1>Peptides: Emerging Candidates for the Prevention and Treatment of Skin Senescence: A Review</h1>
<html><body><div><section class="body main-article-body"><section class="abstract" id="abstract1"><h2>Abstract</h2>
<p>One class of cosmetic compounds that have raised interest of many experts is peptides. The search for ingredients with good biocompatibility and bioactivity has led to the use of peptides in cosmetic products. Peptides are novel active ingredients that improve collagen synthesis, enhance skin cell proliferation, or decrease inflammation. Based on their mechanism of action, they can be classified into signal peptides, carrier peptides, neurotransmitter inhibitor peptides, and enzyme inhibitor peptides. This review focuses on the main types of peptides and their application in the cosmetic field, underlining their main limitations. One of the most significant drawbacks of cosmetic peptides is their poor permeability through membranes, which limits their delivery and effectiveness. As a result, this review follows the methods used for improving permeability through the stratum corneum. Increasing peptide bioavailability and stability for enhanced delivery to the desired site of action and visible effects have become central points for the latest research due to their promising features. For this purpose, several methods have been identified and described. Physical techniques include thermal ablation (radiofrequency and laser), electrical methods (electroporation, iontophoresis), mechanical approach (microneedles), and ultrasounds. As an alternative, innovative formulations have been developed in nano-systems such as liposomes, niosomes, ethosomes, nanoemulsions, and other nanomaterials to reduce skin irritation and improve product effectiveness. The purpose of this review is to provide the latest information regarding these noteworthy molecules and the reasoning behind their use in cosmetic formulations.</p>
<section class="kwd-group" id="kwd-group1"><p><strong>Keywords:</strong> cosmetic peptides, anti-aging products, permeability, nano-systems</p></section></section><section id="sec1-biomolecules-15-00088"><h2 class="pmc_sec_title">1. Introduction</h2>
<p>Recently, the cosmetic industry has seen impressive development due to a better understanding of the skins physiological mechanisms and a growing demand for innovative products. This has led to the expansion of new research techniques, novel active ingredients, and vehicles, changing our understanding of how cosmetics influence and improve skin conditions. These developments have propelled cosmetics into a new era of scientifically engineered products for the development of a wide range of skin phenotypes and affections. Originally conceived as preparations intended to improve personal appearance by direct application to the skin, cosmetics have now taken a new role in dermatology by supporting the management of many skin conditions [<a aria-describedby="B1-biomolecules-15-00088" class="usa-link" href="#B1-biomolecules-15-00088">1</a>].</p>
<p>The aspect of normal and healthy-looking skin reflects flexibility, elasticity, hydration, and firmness. All of these characteristics are influenced by the consistency of collagen and elastin fibers, the keratinization of the stratum corneum, the degree of hydration, and the water-binding capacity [<a aria-describedby="B2-biomolecules-15-00088" class="usa-link" href="#B2-biomolecules-15-00088">2</a>]. However, due to intrinsic and extrinsic factors, the skin is subject to degradation and displays signs of aging. Exposure to UV radiation will change the structure of the skin by affecting the structural proteins, leading to loss of moisture, firmness, elasticity, softness, and the appearance of spots and wrinkles. This process is known as photoaging and is one of the main causes of accelerated skin aging [<a aria-describedby="B3-biomolecules-15-00088" class="usa-link" href="#B3-biomolecules-15-00088">3</a>].</p>
<p>Collagen is a fibrillar protein that dominates the extracellular matrix of most connective tissues and is responsible for the structure and biochemical properties of the skin. The most common type of collagen found in organisms is type I [<a aria-describedby="B4-biomolecules-15-00088" class="usa-link" href="#B4-biomolecules-15-00088">4</a>]. The process of aging is associated with decreased collagen synthesis and increased cleavage of fibrils but also exacerbated levels of matrix metalloproteinases, whose purpose is to break down collagen and elastin fibers [<a aria-describedby="B5-biomolecules-15-00088" class="usa-link" href="#B5-biomolecules-15-00088">5</a>].</p>
<p>Due to its important aesthetic function, the skin has captivated peoples interest since the beginning of time. Treating wrinkles and aging signs using cosmetic products has become a widely used practice. Many products are intended to improve the nature of deteriorated collagen and firmness or paralyze the muscles that cause wrinkles. The active ingredients used in modern anti-aging cosmetics have additional effects, exhibiting more complex functions (protection, nourishing, moisturizing, exfoliating) [<a aria-describedby="B6-biomolecules-15-00088" class="usa-link" href="#B6-biomolecules-15-00088">6</a>].</p>
<p>Bioactive peptides, usually containing 330 amino acids (AA), are natural or synthetic compounds involved in a variety of physiological activities such as cellular protection, thermoregulation, and immunity. Peptides exhibit many biological properties, including antioxidant, antimicrobial, and anti-inflammatory activities, in addition to their properties of inhibiting aging-related enzymes [<a aria-describedby="B7-biomolecules-15-00088" class="usa-link" href="#B7-biomolecules-15-00088">7</a>].</p>
<p>Over the last decades, the study of peptides has extended to the field of cosmetics. Their applications can vary from enhancing skin cell proliferation, reduction in pigmentation spots, decreasing inflammation, and improving skin barrier functions.</p>
<p>The most common classification of cosmetic peptides is based on their mechanism of action as follows: signal peptides, carrier peptides, neurotransmitter inhibitor peptides, and enzyme inhibitor peptides (<a class="usa-link" href="#biomolecules-15-00088-t001">Table 1</a>) [<a aria-describedby="B4-biomolecules-15-00088" class="usa-link" href="#B4-biomolecules-15-00088">4</a>].</p>
<p>The amino acid sequence of a cosmetic peptide plays a crucial role in determining its effects on the skin. Each amino acid in a peptide sequence contributes to the shape and charge of the molecule, therefore determining how the peptide interacts with the receptors and enzymes and how it diffuses through the lipid layer. In a study focused on understanding how the amino acid sequence affects the interaction of peptides with lipid membranes, it has been observed that peptides with a positive charge bind more easily to the hydrophobic layer than neutral or negatively charged peptide molecules. This study has highlighted that amino acids at various positions in the peptide sequence bind differently to the membrane. Considering this, peptides containing amino acids with a positive charge, such as lysine, can bind with a higher frequency to the membrane if they are located at the extremities of the sequence. Nevertheless, peptides composed of less hydrophobic, non-polar residues (such as valine and alanine) are much less likely to adsorb to the membrane than phenylalanine peptides [<a aria-describedby="B8-biomolecules-15-00088" class="usa-link" href="#B8-biomolecules-15-00088">8</a>]. Liu et al. have studied the adsorption of four similar peptides containing the same amino acids but arranged differently in the sequence. It was revealed that the contribution of each amino acid to the peptides hydrophobicity was affected by the position of the amino acid. When placed in the middle of the chain, the most lipophilic amino acid showed the highest hydrophobicity [<a aria-describedby="B9-biomolecules-15-00088" class="usa-link" href="#B9-biomolecules-15-00088">9</a>]. By modifying sequence length, amino acid composition, and structural modifications, peptide developers can create targeted, stable, and efficient skin-care ingredients with specific actions.</p>
<section class="tw xbox font-sm" id="biomolecules-15-00088-t001"><h3 class="obj_head">Table 1.</h3>
<div class="tbl-box p" tabindex="0"><table class="content" frame="hsides" rules="groups">
<thead><tr>
<th align="center" colspan="1" rowspan="1" valign="middle">Type of Peptide</th>
<th align="center" colspan="1" rowspan="1" valign="middle">Peptide Name</th>
<th align="center" colspan="1" rowspan="1" valign="middle">Commercial Name</th>
<th align="center" colspan="1" rowspan="1" valign="middle">Amino Acid Sequence</th>
<th align="center" colspan="1" rowspan="1" valign="middle">Molecular Weight<br/>(g/mol)</th>
<th align="center" colspan="1" rowspan="1" valign="middle">Role</th>
<th align="center" colspan="1" rowspan="1" valign="middle">Reference</th>
</tr></thead>
<tbody>
<tr>
<td align="center" colspan="1" rowspan="15" valign="middle">Signal peptides</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Palmitoyl Pentapetide-4</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Matrixyl<sup>®</sup>
</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Lys-Thr-Thr-Lys-Ser</td>
<td align="center" colspan="1" rowspan="1" valign="middle">802.1</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Stimulates the production of collagen and other extracellular matrix components.</td>
<td align="center" colspan="1" rowspan="1" valign="middle">[<a aria-describedby="B10-biomolecules-15-00088" class="usa-link" href="#B10-biomolecules-15-00088">10</a>]</td>
</tr>
<tr>
<td align="center" colspan="1" rowspan="1" valign="middle">Tripeptide-10 Citrulline</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Decorinyl™</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Lys-Asp-Ile</td>
<td align="center" colspan="1" rowspan="1" valign="middle">530.6</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Regulates the fibrillogenesis process and collagen fibril dimensions.</td>
<td align="center" colspan="1" rowspan="1" valign="middle">[<a aria-describedby="B11-biomolecules-15-00088" class="usa-link" href="#B11-biomolecules-15-00088">11</a>]</td>
</tr>
<tr>
<td align="center" colspan="1" rowspan="1" valign="middle">Palmitoyl Hexapeptide-12</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Biopeptide El™</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Val-Gly-Val-Ala-Pro-Gly</td>
<td align="center" colspan="1" rowspan="1" valign="middle">737.0</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Promotes collagen and elastin production.<br/>Anti-inflammatory effect.</td>
<td align="center" colspan="1" rowspan="1" valign="middle">[<a aria-describedby="B12-biomolecules-15-00088" class="usa-link" href="#B12-biomolecules-15-00088">12</a>]</td>
</tr>
<tr>
<td align="center" colspan="1" rowspan="1" valign="middle">Palmitoyl Tripeptide-5</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Syn<sup>®</sup>-Coll</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Lys-Val-Lys</td>
<td align="center" colspan="1" rowspan="1" valign="middle">611.9</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Boosts collagen production by stimulating TGF-β production and increasing cellular communication.</td>
<td align="center" colspan="1" rowspan="1" valign="middle">[<a aria-describedby="B13-biomolecules-15-00088" class="usa-link" href="#B13-biomolecules-15-00088">13</a>]</td>
</tr>
<tr>
<td align="center" colspan="1" rowspan="1" valign="middle">Palmitoyl Tripeptide-1</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Biopeptide CL™</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Gly-His-Lys</td>
<td align="center" colspan="1" rowspan="1" valign="middle">578.8</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Stimulates collagen and glycosaminoglycans.</td>
<td align="center" colspan="1" rowspan="1" valign="middle">[<a aria-describedby="B14-biomolecules-15-00088" class="usa-link" href="#B14-biomolecules-15-00088">14</a>]</td>
</tr>
<tr>
<td align="center" colspan="1" rowspan="1" valign="middle">Acetyl Tetrapeptide 9</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Dermican™</td>
<td align="center" colspan="1" rowspan="1" valign="middle">
<em>N</em>-Acetyl-Gln-Asp-Val-His</td>
<td align="center" colspan="1" rowspan="1" valign="middle">539.5</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Stimulates collagen type I and lumican synthesis.</td>
<td align="center" colspan="1" rowspan="1" valign="middle">[<a aria-describedby="B12-biomolecules-15-00088" class="usa-link" href="#B12-biomolecules-15-00088">12</a>]</td>
</tr>
<tr>
<td align="center" colspan="1" rowspan="1" valign="middle">Acetyl Tetrapeptide-11</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Syniorage™</td>
<td align="center" colspan="1" rowspan="1" valign="middle">N-Acetyl-Pro-Pro-Tyr-Leu</td>
<td align="center" colspan="1" rowspan="1" valign="middle">530.6</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Accelerates keratinocyte growth and syndecan-1 synthesis.</td>
<td align="center" colspan="1" rowspan="1" valign="middle">[<a aria-describedby="B12-biomolecules-15-00088" class="usa-link" href="#B12-biomolecules-15-00088">12</a>]</td>
</tr>
<tr>
<td align="center" colspan="1" rowspan="1" valign="middle">Elaidoyl Tripeptide-37</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Lipospondin</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Elaidyl-Lys-Phe-Lys-OH</td>
<td align="center" colspan="1" rowspan="1" valign="middle">578.79</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Stimulates TGF-β, promoting collagen and elastin production.</td>
<td align="center" colspan="1" rowspan="1" valign="middle">[<a aria-describedby="B15-biomolecules-15-00088" class="usa-link" href="#B15-biomolecules-15-00088">15</a>]</td>
</tr>
<tr>
<td align="center" colspan="1" rowspan="1" valign="middle">Peptamide-6 /Hexapeptide-11</td>
<td align="center" colspan="1" rowspan="1" valign="middle">ND</td>
<td align="center" colspan="1" rowspan="1" valign="middle">PheValAlaProPhePro</td>
<td align="center" colspan="1" rowspan="1" valign="middle">676.8</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Modulates key genes responsible for collagen synthesis, improving skin elasticity.</td>
<td align="center" colspan="1" rowspan="1" valign="middle">[<a aria-describedby="B16-biomolecules-15-00088" class="usa-link" href="#B16-biomolecules-15-00088">16</a>]</td>
</tr>
<tr>
<td align="center" colspan="1" rowspan="1" valign="middle">Trifluoroacetyl Tripeptide-2</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Progeline<sup>TM</sup>
</td>
<td align="center" colspan="1" rowspan="1" valign="middle">TFA-Val-Tyr-Val</td>
<td align="center" colspan="1" rowspan="1" valign="middle">475.46</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Inhibits progerin synthesis, a cell-aging accelerator protein.</td>
<td align="center" colspan="1" rowspan="1" valign="middle">[<a aria-describedby="B17-biomolecules-15-00088" class="usa-link" href="#B17-biomolecules-15-00088">17</a>]</td>
</tr>
<tr>
<td align="center" colspan="1" rowspan="1" valign="middle">Palmitoyl Tetrapeptide-7</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Rigin™</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Gly-Glu-Pro-Arg</td>
<td align="center" colspan="1" rowspan="1" valign="middle">694.9</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Decreases IL-6 secretion, reduces inflammation after UVB exposure, and stimulates laminins IV and V as well as collagen VII production.</td>
<td align="center" colspan="1" rowspan="1" valign="middle">[<a aria-describedby="B18-biomolecules-15-00088" class="usa-link" href="#B18-biomolecules-15-00088">18</a>]</td>
</tr>
<tr>
<td align="center" colspan="1" rowspan="1" valign="middle">Heptapeptide</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Perfection Peptide P7™</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Ac-Asp-Glu-Glu-Thr-Gly-Glu-Phe-OH</td>
<td align="center" colspan="1" rowspan="1" valign="middle">867.8</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Protects skin cells against UV damage by stimulating Nrf2-dependant antioxidant enzymes.</td>
<td align="center" colspan="1" rowspan="1" valign="middle">[<a aria-describedby="B19-biomolecules-15-00088" class="usa-link" href="#B19-biomolecules-15-00088">19</a>]</td>
</tr>
<tr>
<td align="center" colspan="1" rowspan="1" valign="middle">Tetrapeptide-30</td>
<td align="center" colspan="1" rowspan="1" valign="middle">PKEK</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Pro-Lys-Glu-Lys</td>
<td align="center" colspan="1" rowspan="1" valign="middle">500.6</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Reduces hyperpigmentation by inhibiting the tyrosinase enzyme and blocking the transfer of melanin.</td>
<td align="center" colspan="1" rowspan="1" valign="middle">[<a aria-describedby="B20-biomolecules-15-00088" class="usa-link" href="#B20-biomolecules-15-00088">20</a>]</td>
</tr>
<tr>
<td align="center" colspan="1" rowspan="1" valign="middle">Tetrapeptide-21</td>
<td align="center" colspan="1" rowspan="1" valign="middle">GEKG</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Gly-Glu-Lys-Gly</td>
<td align="center" colspan="1" rowspan="1" valign="middle">389.40</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Stimulates collagen synthesis at the mRNA and protein levels while also positively influencing hyaluronan and fibronectin.</td>
<td align="center" colspan="1" rowspan="1" valign="middle">[<a aria-describedby="B21-biomolecules-15-00088" class="usa-link" href="#B21-biomolecules-15-00088">21</a>]</td>
</tr>
<tr>
<td align="center" colspan="1" rowspan="1" valign="middle">SA 1-III</td>
<td align="center" colspan="1" rowspan="1" valign="middle">KP1</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Ac-Met-Gly-Lys-Val-Val-Asn-Pro-Thr-Gln-Lys-NH2</td>
<td align="center" colspan="1" rowspan="1" valign="middle">1142.4</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Modulates collagen turnover.</td>
<td align="center" colspan="1" rowspan="1" valign="middle">[<a aria-describedby="B22-biomolecules-15-00088" class="usa-link" href="#B22-biomolecules-15-00088">22</a>]</td>
</tr>
<tr>
<td align="center" colspan="1" rowspan="2" valign="middle">Carrier peptides</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Copper Tripeptide-1</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Cu-GHK</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Gly-His-Lys</td>
<td align="center" colspan="1" rowspan="1" valign="middle">400.90</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Modulates matrix metalloproteinase expression, accelerates skin regeneration, reduces inflammation, promotes the production of collagen and glycosaminoglycans, and has antioxidant properties.</td>
<td align="center" colspan="1" rowspan="1" valign="middle">[<a aria-describedby="B23-biomolecules-15-00088" class="usa-link" href="#B23-biomolecules-15-00088">23</a>]</td>
</tr>
<tr>
<td align="center" colspan="1" rowspan="1" valign="middle">Manganese Tripeptide-1</td>
<td align="center" colspan="1" rowspan="1" valign="middle">GHK-Mn<sup>2+</sup>
</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Gly-His-Lys</td>
<td align="center" colspan="1" rowspan="1" valign="middle">392.29</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Reduces hyperpigmentation and has antioxidant properties.</td>
<td align="center" colspan="1" rowspan="1" valign="middle">[<a aria-describedby="B23-biomolecules-15-00088" class="usa-link" href="#B23-biomolecules-15-00088">23</a>]</td>
</tr>
<tr>
<td align="center" colspan="1" rowspan="8" valign="middle">Neurotransmitter inhibitor peptide</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Acetyl Hexapeptide-3</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Argirelin<sup>®</sup>
</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Glu-Glu-Met-Gln-Arg-Arg</td>
<td align="center" colspan="1" rowspan="1" valign="middle">887.0</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Inhibits neurotransmitter release and muscle contraction.</td>
<td align="center" colspan="1" rowspan="1" valign="middle">[<a aria-describedby="B24-biomolecules-15-00088" class="usa-link" href="#B24-biomolecules-15-00088">24</a>]</td>
</tr>
<tr>
<td align="center" colspan="1" rowspan="1" valign="middle">Pentapeptide-18</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Leuphasyl<sup>®</sup>
</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Tyr-Ala-Gly-Phe-Leu</td>
<td align="center" colspan="1" rowspan="1" valign="middle">569.6</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Modulates the release of certain neurotransmitters. </td>
<td align="center" colspan="1" rowspan="1" valign="middle">[<a aria-describedby="B25-biomolecules-15-00088" class="usa-link" href="#B25-biomolecules-15-00088">25</a>]</td>
</tr>
<tr>
<td align="center" colspan="1" rowspan="1" valign="middle">Tripeptide-3</td>
<td align="center" colspan="1" rowspan="1" valign="middle">SYN-AKE<sup>®</sup>
</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Ala-Pro-Dab</td>
<td align="center" colspan="1" rowspan="1" valign="middle">495.6</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Acetylcholine receptor antagonist.</td>
<td align="center" colspan="1" rowspan="1" valign="middle">[<a aria-describedby="B14-biomolecules-15-00088" class="usa-link" href="#B14-biomolecules-15-00088">14</a>]</td>
</tr>
<tr>
<td align="center" colspan="1" rowspan="1" valign="middle">Acetyl octapeptide-1/3</td>
<td align="center" colspan="1" rowspan="1" valign="middle">SNAP-8™</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Glu-Glu-Met-Gln-Arg-Arg-Ala-Asp</td>
<td align="center" colspan="1" rowspan="1" valign="middle">1073.2</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Blocks the SNARE complex by inhibiting SNAP-8.</td>
<td align="center" colspan="1" rowspan="1" valign="middle">[<a aria-describedby="B26-biomolecules-15-00088" class="usa-link" href="#B26-biomolecules-15-00088">26</a>]</td>
</tr>
<tr>
<td align="center" colspan="1" rowspan="1" valign="middle">Acetyl Dipeptide-1 Cetyl Ester</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Calmosensine™</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Tyr-Arg</td>
<td align="center" colspan="1" rowspan="1" valign="middle">603.8</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Stimulates the skin nerve cells to release met-enkephalin, resulting in muscle relaxation and reduced inflammation.</td>
<td align="center" colspan="1" rowspan="1" valign="middle">[<a aria-describedby="B27-biomolecules-15-00088" class="usa-link" href="#B27-biomolecules-15-00088">27</a>]</td>
</tr>
<tr>
<td align="center" colspan="1" rowspan="1" valign="middle">Palmitoyl Tripeptide-8</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Neutrazen™</td>
<td align="center" colspan="1" rowspan="1" valign="middle">His-Phe-Arg</td>
<td align="center" colspan="1" rowspan="1" valign="middle">695.9</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Reduces the production of UVB-induced inflammatory cytokines such as IL-8.</td>
<td align="center" colspan="1" rowspan="1" valign="middle">[<a aria-describedby="B18-biomolecules-15-00088" class="usa-link" href="#B18-biomolecules-15-00088">18</a>]</td>
</tr>
<tr>
<td align="center" colspan="1" rowspan="1" valign="middle">Acetyl Tetrapeptide-15</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Skinasensyl™</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Tyr-Pro-Phe-Phe</td>
<td align="center" colspan="1" rowspan="1" valign="middle">613.7</td>
<td align="center" colspan="1" rowspan="1" valign="middle">It limits the release of pro-inflammatory neuromediators and reduces skin hyperreactivity.</td>
<td align="center" colspan="1" rowspan="1" valign="middle">[<a aria-describedby="B18-biomolecules-15-00088" class="usa-link" href="#B18-biomolecules-15-00088">18</a>]</td>
</tr>
<tr>
<td align="center" colspan="1" rowspan="1" valign="middle">Pentapeptide 3</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Vialox<sup>®</sup>
</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Gly-Pro-Arg-Pro-Ala</td>
<td align="center" colspan="1" rowspan="1" valign="middle">495.6</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Reduces muscle cell contraction by acting as a competitive antagonist at the acetylcholine postsynaptic membrane receptor.</td>
<td align="center" colspan="1" rowspan="1" valign="middle">[<a aria-describedby="B28-biomolecules-15-00088" class="usa-link" href="#B28-biomolecules-15-00088">28</a>]</td>
</tr>
<tr>
<td align="center" colspan="1" rowspan="3" valign="middle">Enzyme inhibitor peptide</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Soybean peptides</td>
<td align="center" colspan="1" rowspan="1" valign="middle">ND</td>
<td align="center" colspan="1" rowspan="1" valign="middle">3-6 amino acids from soybean</td>
<td align="center" colspan="1" rowspan="1" valign="middle">-</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Neutralize free radicals, increase collagen synthesis, offer UV protection.</td>
<td align="center" colspan="1" rowspan="1" valign="middle">[<a aria-describedby="B29-biomolecules-15-00088" class="usa-link" href="#B29-biomolecules-15-00088">29</a>]</td>
</tr>
<tr>
<td align="center" colspan="1" rowspan="1" valign="middle">Rice peptides</td>
<td align="center" colspan="1" rowspan="1" valign="middle">ND</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Obtained from the silk gland of the silkworm <em>Bombyx mori</em>
</td>
<td align="center" colspan="1" rowspan="1" valign="middle">-</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Antioxidant and anti-inflammatory effects.</td>
<td align="center" colspan="1" rowspan="1" valign="middle">[<a aria-describedby="B30-biomolecules-15-00088" class="usa-link" href="#B30-biomolecules-15-00088">30</a>]</td>
</tr>
<tr>
<td align="center" colspan="1" rowspan="1" valign="middle">Silk peptides</td>
<td align="center" colspan="1" rowspan="1" valign="middle">ND</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Obtained from rice protein</td>
<td align="center" colspan="1" rowspan="1" valign="middle">-</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Inhibit the activity of metalloproteinases and stimulate the synthesis of hyaluronan synthase 2 gene.</td>
<td align="center" colspan="1" rowspan="1" valign="middle">[<a aria-describedby="B31-biomolecules-15-00088" class="usa-link" href="#B31-biomolecules-15-00088">31</a>]</td>
</tr>
</tbody>
</table></div>
</section></section><section id="sec2-biomolecules-15-00088"><h2 class="pmc_sec_title">2. Applications of Cosmetic Peptides</h2>
<p>Cosmetic peptides have emerged as powerful, innovative tools in modern skincare, offering solutions to a variety of skin concerns. They have become remarkable compounds due to their main purpose as anti-wrinkle agents. Cosmetic peptides reduce existing wrinkles and prevent new ones from forming through a variety of mechanisms of action, which can act synergically for enhanced results. Signal peptides are used to stimulate fibroblast cells to increase collagen production and improve skin elasticity; neurotransmitter inhibitor peptides relax facial muscles, minimizing expression wrinkles; carrier peptides deliver essential trace elements to support skin repair, and enzyme inhibitor peptides reduce collagen breakdown, preserving the integrity of the skin (<a class="usa-link" href="#biomolecules-15-00088-f001">Figure 1</a>) [<a aria-describedby="B32-biomolecules-15-00088" class="usa-link" href="#B32-biomolecules-15-00088">32</a>,<a aria-describedby="B33-biomolecules-15-00088" class="usa-link" href="#B33-biomolecules-15-00088">33</a>].</p>
<figure class="fig xbox font-sm" id="biomolecules-15-00088-f001"><h3 class="obj_head">Figure 1.</h3>
<p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&amp;p=PMC3&amp;id=11762834_biomolecules-15-00088-g001.jpg" target="_blank"><img alt="Figure 1" class="graphic zoom-in" loading="lazy" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5daa/11762834/5a04181540ec/biomolecules-15-00088-g001.jpg"/></a></p>
<figcaption><p>Anti-wrinkle mechanism.</p></figcaption></figure><p>One of their most significant effects is their ability to enhance the stimulation of collagen production. This property is mostly linked to signal peptides based on the capacity to mimic the transmitted signal during the synthesis of extracellular matrix proteins, such as collagen and elastin, which results in increased fibroblast activity, with consequent production of collagen and elastin. Peptides are used to restore collagen levels affected by fibroblast senescence, which slows their proliferation and reduces collagen synthesis (especially type I) while also addressing its degradation by proteolytic enzymes to achieve more elastic, firm, and smoother skin [<a aria-describedby="B34-biomolecules-15-00088" class="usa-link" href="#B34-biomolecules-15-00088">34</a>]. Additionally, they have metabolic functions and can act as growth factors, such as in the case of Hexapeptide-12, a signal peptide that is able to activate protein kinase C, an enzyme responsible for cell growth and development [<a aria-describedby="B35-biomolecules-15-00088" class="usa-link" href="#B35-biomolecules-15-00088">35</a>].</p>
<p>Recent research has discovered that some cosmetic peptides possess wound healing and tissue regeneration properties by promoting tissue repair, modulating inflammation, and enhancing cellular communication. One of the most notable compounds from this class is Copper Tripeptide-1, a carrier peptide that stabilizes and delivers trace elements such as copper or manganese necessary for wound healing and various enzymatic processes [<a aria-describedby="B36-biomolecules-15-00088" class="usa-link" href="#B36-biomolecules-15-00088">36</a>]. It was first described by Pikard et al. as a growth factor for mature cells, but other effects have since been reported. GHKCu works as a powerful chemotactic agent for monocytes, macrophages, and mast cells. It promotes nerve tissue regeneration, stimulates angiogenesis in vivo, ensuring a steady supply of oxygen and nutrients to the healing site, and enhances the expression of extracellular matrix components in both in vivo and in vitro settings, rebuilding damaged tissue [<a aria-describedby="B37-biomolecules-15-00088" class="usa-link" href="#B37-biomolecules-15-00088">37</a>]. The peptide sequence of GHKCu is found in the proteins of the extracellular matrix, such as the α chain of human collagen, indicating that it may be released during collagen production at the site of the wound [<a aria-describedby="B38-biomolecules-15-00088" class="usa-link" href="#B38-biomolecules-15-00088">38</a>]. This carrier peptide plays a crucial role in wound healing by delivering copper, which is essential for metalloproteinase activity [<a aria-describedby="B32-biomolecules-15-00088" class="usa-link" href="#B32-biomolecules-15-00088">32</a>]. Siméon et al. have proved that repeated injections of glycylhistidyl-lysine-Cu<sup>2+</sup> (2 mg/inj.) stimulate wound tissue production accompanied by type I collagen and glycosaminoglycans proliferation [<a aria-describedby="B39-biomolecules-15-00088" class="usa-link" href="#B39-biomolecules-15-00088">39</a>]. The targeted action of cosmetic peptides on skin cells complements and, in some cases, enhances the effects of other ingredients like copper sulfate, zinc sulfate, hyaluronic acid, or vitamin E. They are often combined with traditional actives to create a synergic effect. For example, carrier peptides can be combined with hyaluronic acid to facilitate hydration while promoting skin repair [<a aria-describedby="B40-biomolecules-15-00088" class="usa-link" href="#B40-biomolecules-15-00088">40</a>]. Cosmetic peptides can also be combined with zinc sulfate for better antimicrobial effect and lesion-healing and with vitamin E in antioxidant formulations, addressing both structural and oxidative damage [<a aria-describedby="B41-biomolecules-15-00088" class="usa-link" href="#B41-biomolecules-15-00088">41</a>]. While the traditional ingredients perform specific roles, peptides enhance and complement these effects, making them a versatile and powerful addition to modern wound-healing formulations.</p>
<p>Furthermore, several peptides can also possess antioxidant properties, counteracting the excessive production of reactive oxygen species (ROS). Different factors such as UV radiation, toxins, inflammation, or other exogenous or endogenous agents can intensify its negative effects. Peptides contribute to the reduction in oxidative stress in the skin by scavenging free radicals through different pathways, resulting in delaying the skins aging process [<a aria-describedby="B42-biomolecules-15-00088" class="usa-link" href="#B42-biomolecules-15-00088">42</a>]. The antioxidant capacity of peptides can be predicted by investigating their structureactivity relationships, molecular weight, amino acid composition, and sequence. Low-molecular-weight peptides (&lt;1 kDa) can substantially enhance antioxidant activity, likely due to their ability to act as electron donors, neutralizing free radicals and preventing chain reactions. The antioxidant effect has been previously linked to specific amino acids: Trp, Phe, and His act as hydrogen donors and improve ROS scavenging capacity; Val, Leu, and Tyr inhibit lipid peroxidation and enhance the accessibility of fat-soluble ROS or polyunsaturated fatty acids [<a aria-describedby="B43-biomolecules-15-00088" class="usa-link" href="#B43-biomolecules-15-00088">43</a>]. A study conducted by Uno et al. has highlighted that the presence of aromatic amino acids at the C-terminus or the hydrophobicity of N-terminal residues could improve the antioxidant effects of peptides [<a aria-describedby="B44-biomolecules-15-00088" class="usa-link" href="#B44-biomolecules-15-00088">44</a>].</p></section><section id="sec3-biomolecules-15-00088"><h2 class="pmc_sec_title">3. Classification of Cosmetic Peptides</h2>
<section id="sec3dot1-biomolecules-15-00088"><h3 class="pmc_sec_title">3.1. Signal Peptides</h3>
<p>Signal peptides are active ingredients used in cosmetic products due to their capacity to stimulate skin fibroblasts, leading to increased production of collagen, elastin, fibronectin, glycosaminoglycan, and proteoglycan. This is possibly due to their ability to modulate the protein turnover of the skin, activating intracellular signaling pathways, for example, transforming the growth factorbeta pathway, thus promoting fibroblast proliferation and the upregulation of genes responsible for collagen and elastin synthesis [<a aria-describedby="B45-biomolecules-15-00088" class="usa-link" href="#B45-biomolecules-15-00088">45</a>]. Additionally, they can activate protein kinase C, an enzyme responsible for cell growth and migration [<a aria-describedby="B13-biomolecules-15-00088" class="usa-link" href="#B13-biomolecules-15-00088">13</a>]. This class of peptides has a three-part structure: a positively charged amino-terminal part; a hydrophobic central part; and a polar carboxyl-terminal part. Signal peptides are highly significant for their ability to open protein channels, enabling the translocation of synthesized proteins to their targeted sites of action [<a aria-describedby="B46-biomolecules-15-00088" class="usa-link" href="#B46-biomolecules-15-00088">46</a>]. Signal peptides (<a class="usa-link" href="#biomolecules-15-00088-f002">Figure 2</a>) include Palmitoyl Pentapetide-4, Tripeptide-10 Citrulline, and Palmitoyl Hexapeptide-12, which will be further described.</p>
<figure class="fig xbox font-sm" id="biomolecules-15-00088-f002"><h4 class="obj_head">Figure 2.</h4>
<p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&amp;p=PMC3&amp;id=11762834_biomolecules-15-00088-g002.jpg" target="_blank"><img alt="Figure 2" class="graphic zoom-in" loading="lazy" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5daa/11762834/e9bf86ebe5d6/biomolecules-15-00088-g002.jpg"/></a></p>
<figcaption><p>Signal peptides: (<strong>A</strong>) Palmitoyl Hexapeptide-12; (<strong>B</strong>) Tripeptide-10 Citrulline; (<strong>C</strong>) Palmitoyl Pentapeptide-4.</p></figcaption></figure><section id="sec3dot1dot1-biomolecules-15-00088"><h4 class="pmc_sec_title">3.1.1. Palmitoyl Pentapetide-4</h4>
<p>Palmitoyl Pentapeptide-4 (Matrixyl<sup>®</sup>) acts as a signaling agent after advancing through the stratum corneum into the dermis. There, it binds to the receptor situated on the cell surface, and through a series of cellular pathways, it boosts collagen types I and III production. Moreover, this peptide can intervene with collagen degradation, resulting in higher concentrations of fibrillar proteins [<a aria-describedby="B10-biomolecules-15-00088" class="usa-link" href="#B10-biomolecules-15-00088">10</a>]. Palmitoyl Pentapeptide-4 can accelerate procollagen production and regulate hyaluronic acid synthesis in fibroblasts [<a aria-describedby="B47-biomolecules-15-00088" class="usa-link" href="#B47-biomolecules-15-00088">47</a>]. This peptide works as a collagen stimulator, leading to improved skin elasticity, smoother and firmer texture, and visible reduction in fine lines and wrinkles. This active ingredient in a concentration of 3% has been proven to be safe, non-irritating, and non-sensitizing, tolerated by all skin types, including oily and acne-prone skin [<a aria-describedby="B48-biomolecules-15-00088" class="usa-link" href="#B48-biomolecules-15-00088">48</a>]. Robinson et al. have conducted a double-blind, placebo, randomized study on ninety-three Caucasian female subjects presenting facial wrinkles and fine lines. After the 12-week trial period of applying oil in water cream containing Palmitoyl Pentapeptide-4, expert graders identified an improvement in fine lines and overall skin appearance [<a aria-describedby="B49-biomolecules-15-00088" class="usa-link" href="#B49-biomolecules-15-00088">49</a>].</p></section><section id="sec3dot1dot2-biomolecules-15-00088"><h4 class="pmc_sec_title">3.1.2. Tripeptide-10 Citrulline</h4>
<p>Tripeptide-10 Citrulline is a tetrapeptide with the amino acid sequence (lysineasparagineisoleucinecitrulline), which mimics the structure of decorin. Decorin is a protein that binds to collagen fibrils and controls collagen genesis, an essential process in tissue formation, consequently managing fibril dimensions, diameter, and spacing [<a aria-describedby="B50-biomolecules-15-00088" class="usa-link" href="#B50-biomolecules-15-00088">50</a>]. In vitro tests have shown that Tripeptide-10 Citrulline can target collagen fiber organization, making them thinner and more uniform, improving their overall cohesion [<a aria-describedby="B51-biomolecules-15-00088" class="usa-link" href="#B51-biomolecules-15-00088">51</a>].</p></section><section id="sec3dot1dot3-biomolecules-15-00088"><h4 class="pmc_sec_title">3.1.3. Palmitoyl Hexapeptide-12</h4>
<p>Palmitoyl Hexapeptide-12 is a peptide that reduces the production of pro-inflammatory cytokines by keratinocytes and fibroblasts, such as interleukine-6 (IL-6). This type of cytokine is usually found in low levels but can be released together with reactive oxidative species (ROS) after UV aggression. ROS can alter the integrity of the skin matrix. Considering this, it is believed that Palmitoyl Hexapeptide-12, through its mechanism, can prevent the degradation of the skin and maintain its integrity [<a aria-describedby="B34-biomolecules-15-00088" class="usa-link" href="#B34-biomolecules-15-00088">34</a>].</p></section></section><section id="sec3dot2-biomolecules-15-00088"><h3 class="pmc_sec_title">3.2. Carrier Peptides</h3>
<p>The main role of carrier peptides is to transport oligo-elements such as copper and manganese to the skin to be used by epithelial cells in physiological activities. One of the metals most often transported by this type of peptide is copper, which is involved in wound-healing processes, collagen synthesis, melanogenesis, and superoxide dismutation, having antioxidant activity [<a aria-describedby="B46-biomolecules-15-00088" class="usa-link" href="#B46-biomolecules-15-00088">46</a>]. Copper is an essential element in enzymatic reactions associated with the wound-healing process. It serves as a cofactor for lysyl oxidase and superoxide dismutase, enzymes essential for collagen production and the prevention of free radical damage. Research has demonstrated that the tripeptide glycylhistidyllysine (GHK), a fragment derived from the alpha chain of collagen, exhibits a high affinity for copper ions, forming a stable GHKCu complex. Metals are challenging to transport and often exhibit instability in various pharmaceutical formulations; however, the utilization of carrier peptides has proven to be an effective solution [<a aria-describedby="B14-biomolecules-15-00088" class="usa-link" href="#B14-biomolecules-15-00088">14</a>].</p>
<section id="sec3dot2dot1-biomolecules-15-00088"><h4 class="pmc_sec_title">3.2.1. Copper Tripeptide-1</h4>
<p>One of the most used peptides in the cosmetic industry is Copper Tripeptide-1 (GHKCu), a hydrophilic molecule consisting of three amino acids: glycine; histidine; and lysine. Its unique properties result from the peptides ability to bind copper. Copper Tripeptide-1 is involved in multiple physiological functions of the skin. It can modulate matrix metalloproteinase expression, enzymes responsible for degrading the components of the extracellular matrix, leading to faster healing time of harmed tissue [<a aria-describedby="B52-biomolecules-15-00088" class="usa-link" href="#B52-biomolecules-15-00088">52</a>]. Also, GHKCu stimulates the production of collagen, elastin, and glycosaminoglycan, supporting the growth and functions of dermal fibroblast [<a aria-describedby="B53-biomolecules-15-00088" class="usa-link" href="#B53-biomolecules-15-00088">53</a>]. Moreover, in combination with hyaluronic acid, it has been demonstrated that Cooper Tripeptide-1 can have a positive impact on collagen IV synthesis [<a aria-describedby="B54-biomolecules-15-00088" class="usa-link" href="#B54-biomolecules-15-00088">54</a>].</p>
<p>Various studies have demonstrated that Copper Tripeptide-1 can improve the appearance of the skin by reducing the depth of wrinkles, tightening loose skin, protecting cells from UV radiation, stimulating wound healing, and reducing inflammation [<a aria-describedby="B55-biomolecules-15-00088" class="usa-link" href="#B55-biomolecules-15-00088">55</a>]. Badenhorst et al. have shown that after 8 weeks of applying a serum formulation containing GHKCu, the wrinkle depth became significantly smaller compared to the vehicle alone or a commercial product containing Matrixyl 3000 [<a aria-describedby="B56-biomolecules-15-00088" class="usa-link" href="#B56-biomolecules-15-00088">56</a>]. Huang et al. proved that GHKCu used together with light therapy led to an increase in collagen type I and fibroblast growth factor production [<a aria-describedby="B57-biomolecules-15-00088" class="usa-link" href="#B57-biomolecules-15-00088">57</a>].</p></section><section id="sec3dot2dot2-biomolecules-15-00088"><h4 class="pmc_sec_title">3.2.2. Manganese Tripeptide-1</h4>
<p>Manganese Tripeptide-1 is a peptide used to carry manganese through the layers of the skin, a metal that is essential for the well-functioning of manganesesuperoxide dismutase. This enzyme is responsible for the neutralization of free radicals induced by UV radiation, which can lead to premature aging and tissue damage [<a aria-describedby="B58-biomolecules-15-00088" class="usa-link" href="#B58-biomolecules-15-00088">58</a>]. Similarly, it is believed that manganese can work as an antioxidant agent to protect the skin from UV-induced degradation. Hussain et al. conducted a study on 15 female participants (4070 years) presenting moderate photodamage and hyperpigmentation marks. The treatment with Manganese Tripeptide-1 produced a significant reduction, mostly in hyperpigmentation signs, with moderate influence on fine lines and wrinkles. These results conclude that Manganese Tripeptide-1 could be used as an adjoining treatment for hyperpigmentation associated with photoaging [<a aria-describedby="B59-biomolecules-15-00088" class="usa-link" href="#B59-biomolecules-15-00088">59</a>].</p></section></section><section id="sec3dot3-biomolecules-15-00088"><h3 class="pmc_sec_title">3.3. Neurotransmitter Inhibitor Peptides</h3>
<p>One of the main causes of wrinkle formation can be sustained muscle contraction, both voluntarily and involuntarily. Acetylcholine (ACh) is the neurotransmitter involved in this process. Muscle contraction occurs when acetylcholine, a neurotransmitter of the parasympathetic nervous system, is released at neuromuscular junctions. This process involves vesicles containing ACh being captured by SNARE (soluble N-ethylmaleimide-sensitive factor activating protein receptor) complexes, which facilitate their fusion with the neuron membrane, allowing ACh to be released into the neuromuscular junction [<a aria-describedby="B13-biomolecules-15-00088" class="usa-link" href="#B13-biomolecules-15-00088">13</a>]. Once released in the synaptic cleft, it interacts with complexes, binds to the receptor, and generates muscle contraction. This entire process is thought to be controlled by SNAP-25, a receptor protein present in the neuronal membrane, which is associated with the vesicle and directly regulates binding with the SNARE complex as well as the fusion with the membrane of the vesicle. Based on the contraction mechanism, several peptides have been designed with sequences resembling SNAP-25 proteins. These peptides can compete for the binding sites on SNARE complexes, disrupting their structural stability and inhibiting the release of acetylcholine at the neuromuscular junction, ultimately inducing muscle relaxation. The peptides that can prevent muscle cramps and can exhibit specific neuro-suppressive properties are called neurotransmitter inhibitor peptides (<a class="usa-link" href="#biomolecules-15-00088-f003">Figure 3</a>) [<a aria-describedby="B60-biomolecules-15-00088" class="usa-link" href="#B60-biomolecules-15-00088">60</a>].</p>
<figure class="fig xbox font-sm" id="biomolecules-15-00088-f003"><h4 class="obj_head">Figure 3.</h4>
<p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&amp;p=PMC3&amp;id=11762834_biomolecules-15-00088-g003.jpg" target="_blank"><img alt="Figure 3" class="graphic zoom-in" loading="lazy" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5daa/11762834/ff07642769a8/biomolecules-15-00088-g003.jpg"/></a></p>
<figcaption><p>Neurotransmitter inhibitor peptides: (<strong>A</strong>) Pentapeptide-18; (<strong>B</strong>) Acetyl Hexapeptide-3; (<strong>C</strong>) Tripeptide-3.</p></figcaption></figure><section id="sec3dot3dot1-biomolecules-15-00088"><h4 class="pmc_sec_title">3.3.1. Acetyl Hexapeptide-3</h4>
<p>Acetyl Hexapeptide-3 (Argireline<sup>®</sup>) is a synthetic peptide whose amino acid sequence resembles the N-terminal end of the SNAP-25 peptide. The competition with the SNAP-25 destabilizes the SNARE complex and inhibits acetylcholine exocytosis. As a result, Acetyl Hexapeptide-3 can reduce the expression of facial lines and wrinkles by preventing intrinsic muscle contraction. It can be considered an alternative option for botulinic products [<a aria-describedby="B61-biomolecules-15-00088" class="usa-link" href="#B61-biomolecules-15-00088">61</a>,<a aria-describedby="B62-biomolecules-15-00088" class="usa-link" href="#B62-biomolecules-15-00088">62</a>]. Since Argireline<sup>®</sup> is one of the most used cosmetic peptides, new delivery routes and methods of application have been studied to facilitate better permeation through the layers of the skin [<a aria-describedby="B63-biomolecules-15-00088" class="usa-link" href="#B63-biomolecules-15-00088">63</a>].</p>
<p>Wang et al. have studied the safety and efficacy of Argireline<sup>®</sup> in the treatment of periorbital wrinkles in Chinese subjects. This randomized, double-blind trial lasted four weeks; then, evaluations were made to determine the efficiency of the active substance. It was concluded that the product containing Acetyl Hexapeptide-3 had a 48.8% anti-wrinkle efficacy compared to the placebo. Analysis of the mechanism of action revealed that Acetyl Hexapeptide-3 has a potency similar to botulinum neurotoxins but with fewer side effects [<a aria-describedby="B64-biomolecules-15-00088" class="usa-link" href="#B64-biomolecules-15-00088">64</a>]. Blanes-Mira et al. have revealed that after 30 days of treatment with an oil-in-water emulsion containing 10% Argireline, the depth of wrinkles was reduced by up to 30% [<a aria-describedby="B65-biomolecules-15-00088" class="usa-link" href="#B65-biomolecules-15-00088">65</a>].</p></section><section id="sec3dot3dot2-biomolecules-15-00088"><h4 class="pmc_sec_title">3.3.2. Pentapeptide-18</h4>
<p>Pentapeptide-18 (Leuphasyl<sup>®</sup>) is a less studied neurotransmitter inhibitor peptide with promising properties. It decreases neuronal activity and neurotransmitter release due to a similar mechanism of action with endogenous enkephalins [<a aria-describedby="B66-biomolecules-15-00088" class="usa-link" href="#B66-biomolecules-15-00088">66</a>]. In addition to its wrinkle-reduction properties, it has been observed that the inclusion of D-tyrosine in the structure of this botox-like peptide provides the ability to reduce melanin content and tyrosinase activity in melanocytes [<a aria-describedby="B67-biomolecules-15-00088" class="usa-link" href="#B67-biomolecules-15-00088">67</a>]. Dragomirescu et al. have evaluated the optimal concentration of Pentapeptide-18 for skin application, as well as its safety and effectiveness. They have found that the minimal efficient concentration is 2%, free of side effects, with visible wrinkle reduction. Although the results were beneficial, they proposed combining Argireline<sup>®</sup> and Leuphasyl<sup>®</sup> because of their different mechanisms of action, resulting in a more long-lasting effect [<a aria-describedby="B25-biomolecules-15-00088" class="usa-link" href="#B25-biomolecules-15-00088">25</a>].</p></section><section id="sec3dot3dot3-biomolecules-15-00088"><h4 class="pmc_sec_title">3.3.3. Tripeptide-3</h4>
<p>Tripeptide-3 (Syn<sup>®</sup>-Ake) is an acetylcholine receptor antagonist similar to the viper venom protein, waglerin-1 [<a aria-describedby="B19-biomolecules-15-00088" class="usa-link" href="#B19-biomolecules-15-00088">19</a>,<a aria-describedby="B68-biomolecules-15-00088" class="usa-link" href="#B68-biomolecules-15-00088">68</a>]. Syn<sup>®</sup>-Ake reduces the movement of facial muscles, which ultimately leads to expression wrinkles, mimicking a botox-like activity. This leads to a smoother and even skin surface. Campiche et al. have found a significant decrease in wrinkle parameters after using a formulation containing 4% Tripeptide-10, but no clear improvement was found for smile lines [<a aria-describedby="B69-biomolecules-15-00088" class="usa-link" href="#B69-biomolecules-15-00088">69</a>]. A study of 45 subjects revealed that Tripeptide-3 improved significantly, by up to 52%, the fine lines of the forehead skin area. Nevertheless, further studies are needed to evaluate the efficiency and safety of Syn<sup>®</sup>-Ake for a better understanding of the way this peptide can be incorporated into cosmetic products [<a aria-describedby="B70-biomolecules-15-00088" class="usa-link" href="#B70-biomolecules-15-00088">70</a>].</p></section></section><section id="sec3dot4-biomolecules-15-00088"><h3 class="pmc_sec_title">3.4. Enzyme Inhibitor Peptides</h3>
<p>Enzyme inhibitor peptides prevent the degradation of collagen fibrils and other proteins by inhibiting enzymes responsible for this process, such as superoxide dismutase, stimulate hyaluronan synthase-2, and proteinases. Enzyme-inhibiting peptides function by diminishing the activity of enzymes, particularly matrix metalloproteinases (MMPs), that accelerate skin aging. Increased ROS production from light exposure stimulates MMP synthesis, resulting in excessive degradation of extracellular matrix proteins and a subsequent loss of skin elasticity and firmness. These peptides mimic the enzymes natural substrates, bind to the active site, or interfere with enzymesubstrate interactions [<a aria-describedby="B34-biomolecules-15-00088" class="usa-link" href="#B34-biomolecules-15-00088">34</a>]. This type of cosmetic peptide shows promising results, but not enough clinical studies are available to confirm their benefits in anti-aging products [<a aria-describedby="B12-biomolecules-15-00088" class="usa-link" href="#B12-biomolecules-15-00088">12</a>]. Some of the most encountered examples, such as soybean, silk, and rice peptides, will be further discussed below.</p>
<section id="sec3dot4dot1-biomolecules-15-00088"><h4 class="pmc_sec_title">3.4.1. Soybean Peptides</h4>
<p>Soy oligopeptides are obtained by hydrolysis of soybean proteins, consisting of threesix amino acids. Recent studies have shown that soybean peptides exhibit various functions: antioxidant effect; the ability to increase type I collagen; and reduce UV photodamage [<a aria-describedby="B71-biomolecules-15-00088" class="usa-link" href="#B71-biomolecules-15-00088">71</a>]. Zhou et al. have studied the impact of soybean peptides with no impact on hyperpigmentation spots and hydration while observing a reduction in UVB-induced erythema. Soybean oligopeptides increased the expression of Bcl-2 protein and reduced the level of p53 and Bax proteins. Therefore, soybean peptides can have a positive impact on human skin, offering protection against UV radiation [<a aria-describedby="B29-biomolecules-15-00088" class="usa-link" href="#B29-biomolecules-15-00088">29</a>,<a aria-describedby="B72-biomolecules-15-00088" class="usa-link" href="#B72-biomolecules-15-00088">72</a>].</p></section><section id="sec3dot4dot2-biomolecules-15-00088"><h4 class="pmc_sec_title">3.4.2. Silk Peptides</h4>
<p>Silk peptides are usually extracted from the silk gland of the silkworm <em>Bombyx mori.</em> These peptides stand out due to their unique antioxidant and anti-inflammatory properties. Sericin, one of the most important silk peptides, stabilizes free radicals responsible for oxidative damage, capturing 80% of ROS. Its antioxidant potential is strictly correlated to the presence of amino acids rich in hydroxyl groups [<a aria-describedby="B73-biomolecules-15-00088" class="usa-link" href="#B73-biomolecules-15-00088">73</a>]. Mumtaz et al. have demonstrated that silk proteins possess anti-aging, antioxidant, and antibacterial properties, having the ability to enhance the activity of antioxidant enzymes [<a aria-describedby="B74-biomolecules-15-00088" class="usa-link" href="#B74-biomolecules-15-00088">74</a>]. In addition, it inhibits lipid peroxidation tyrosinase activity and keratinocyte apoptosis [<a aria-describedby="B70-biomolecules-15-00088" class="usa-link" href="#B70-biomolecules-15-00088">70</a>].</p></section><section id="sec3dot4dot3-biomolecules-15-00088"><h4 class="pmc_sec_title">3.4.3. Rice Peptides</h4>
<p>Rice-derived peptides inhibit the activity of metalloproteinases and stimulate the synthesis of hyaluronan synthase 2 genes in keratinocyte cells [<a aria-describedby="B13-biomolecules-15-00088" class="usa-link" href="#B13-biomolecules-15-00088">13</a>]. Rice protein hydrolysates can exhibit many benefits for the human organism, such as the inhibition of angiotensin I-converting enzyme and antioxidant activity. Therefore, they can be used as an alternative therapy for skin care [<a aria-describedby="B75-biomolecules-15-00088" class="usa-link" href="#B75-biomolecules-15-00088">75</a>]. In a study conducted by Zhang et al., the results have shown that rice peptides could reduce melanin content (improving hyperpigmentation spots), tyrosinase activity, and ROS levels induced by UV radiation [<a aria-describedby="B76-biomolecules-15-00088" class="usa-link" href="#B76-biomolecules-15-00088">76</a>].</p>
<p>Cosmetic peptides can be tailored to fit diverse formulations, enabling their integration into a wide array of skincare products. A market study has shown that the interest in incorporating two or more peptides in one formulation has increased in recent times. Moreover, the diversity of peptides almost doubled in the period of analysis, reflecting the growing importance of these ingredients [<a aria-describedby="B77-biomolecules-15-00088" class="usa-link" href="#B77-biomolecules-15-00088">77</a>]. A summary of different cosmetic formulations containing peptides and the concentrations used can be found in <a class="usa-link" href="#biomolecules-15-00088-t002">Table 2</a>.</p>
<section class="tw xbox font-sm" id="biomolecules-15-00088-t002"><h5 class="obj_head">Table 2.</h5>
<div class="caption p"><p>Cosmetic formulations with peptides.</p></div>
<div class="tbl-box p" tabindex="0"><table class="content" frame="hsides" rules="groups">
<thead><tr>
<th align="center" colspan="1" rowspan="1" valign="middle">Peptide</th>
<th align="center" colspan="1" rowspan="1" valign="middle">Formulation Type</th>
<th align="center" colspan="1" rowspan="1" valign="middle">Concentration</th>
<th align="center" colspan="1" rowspan="1" valign="middle">References</th>
</tr></thead>
<tbody>
<tr>
<td align="center" colspan="1" rowspan="1" valign="middle">Palmitoyl Pentapeptide-4</td>
<td align="center" colspan="1" rowspan="1" valign="middle">o/w cream</td>
<td align="center" colspan="1" rowspan="1" valign="middle">0.0003%</td>
<td align="center" colspan="1" rowspan="1" valign="middle">[<a aria-describedby="B49-biomolecules-15-00088" class="usa-link" href="#B49-biomolecules-15-00088">49</a>]</td>
</tr>
<tr>
<td align="center" colspan="1" rowspan="1" valign="middle">Tripeptide-10 Citrulline</td>
<td align="center" colspan="1" rowspan="1" valign="middle">w/w cream</td>
<td align="center" colspan="1" rowspan="1" valign="middle">5%</td>
<td align="center" colspan="1" rowspan="1" valign="middle">[<a aria-describedby="B50-biomolecules-15-00088" class="usa-link" href="#B50-biomolecules-15-00088">50</a>]</td>
</tr>
<tr>
<td align="center" colspan="1" rowspan="1" valign="middle">Palmitoyl hexapeptide-12</td>
<td align="center" colspan="1" rowspan="1" valign="middle">w/w cream</td>
<td align="center" colspan="1" rowspan="1" valign="middle">0.0004%</td>
<td align="center" colspan="1" rowspan="1" valign="middle">[<a aria-describedby="B34-biomolecules-15-00088" class="usa-link" href="#B34-biomolecules-15-00088">34</a>]</td>
</tr>
<tr>
<td align="center" colspan="1" rowspan="1" valign="middle">Copper Tripeptide-1</td>
<td align="center" colspan="1" rowspan="1" valign="middle">serum</td>
<td align="center" colspan="1" rowspan="1" valign="middle">1%</td>
<td align="center" colspan="1" rowspan="1" valign="middle">[<a aria-describedby="B57-biomolecules-15-00088" class="usa-link" href="#B57-biomolecules-15-00088">57</a>]</td>
</tr>
<tr>
<td align="center" colspan="1" rowspan="1" valign="middle">Acetyl Hexapeptide-3</td>
<td align="center" colspan="1" rowspan="1" valign="middle">o/w or w/w cream</td>
<td align="center" colspan="1" rowspan="1" valign="middle">10%</td>
<td align="center" colspan="1" rowspan="1" valign="middle">[<a aria-describedby="B50-biomolecules-15-00088" class="usa-link" href="#B50-biomolecules-15-00088">50</a>,<a aria-describedby="B65-biomolecules-15-00088" class="usa-link" href="#B65-biomolecules-15-00088">65</a>]</td>
</tr>
<tr>
<td align="center" colspan="1" rowspan="1" valign="middle">Pentapeptide-18</td>
<td align="center" colspan="1" rowspan="1" valign="middle">o/w cream</td>
<td align="center" colspan="1" rowspan="1" valign="middle">2%</td>
<td align="center" colspan="1" rowspan="1" valign="middle">[<a aria-describedby="B25-biomolecules-15-00088" class="usa-link" href="#B25-biomolecules-15-00088">25</a>]</td>
</tr>
<tr>
<td align="center" colspan="1" rowspan="1" valign="middle">Acetyl Octapeptide-3</td>
<td align="center" colspan="1" rowspan="1" valign="middle">solution</td>
<td align="center" colspan="1" rowspan="1" valign="middle">0.05%</td>
<td align="center" colspan="1" rowspan="1" valign="middle">[<a aria-describedby="B78-biomolecules-15-00088" class="usa-link" href="#B78-biomolecules-15-00088">78</a>]</td>
</tr>
<tr>
<td align="center" colspan="1" rowspan="1" valign="middle">Tripeptide-3</td>
<td align="center" colspan="1" rowspan="1" valign="middle">o/w cream</td>
<td align="center" colspan="1" rowspan="1" valign="middle">4%</td>
<td align="center" colspan="1" rowspan="1" valign="middle">[<a aria-describedby="B69-biomolecules-15-00088" class="usa-link" href="#B69-biomolecules-15-00088">69</a>]</td>
</tr>
</tbody>
</table></div>
</section></section></section></section><section id="sec4-biomolecules-15-00088"><h2 class="pmc_sec_title">4. Limitations of Peptides</h2>
<p>The unique properties of cosmetic peptides make them ideal candidates for anti-aging therapy. Recent studies focus not only on their bioactivity but also on the bioavailability and stability of formulations [<a aria-describedby="B79-biomolecules-15-00088" class="usa-link" href="#B79-biomolecules-15-00088">79</a>]. There are numerous advantages to using peptides in cosmetic products, but developing novel formulations faces challenges and limitations in terms of stability, solubility, and permeation [<a aria-describedby="B13-biomolecules-15-00088" class="usa-link" href="#B13-biomolecules-15-00088">13</a>].</p>
<p>Another challenge the scientists have faced in the manufacturing processes is maintaining the structural integrity and bioactivity of peptides. These attributes can be affected by the interaction with other components, pH, temperature, and formulation processes (encapsulation, packaging, concentration, and delivery). To overcome this limitation, special attention must be paid when choosing chemically inert or less reactive excipients [<a aria-describedby="B7-biomolecules-15-00088" class="usa-link" href="#B7-biomolecules-15-00088">7</a>]. In addition, the acquisition of peptides requires increased costs, which depend on the amino acid composition and chain length [<a aria-describedby="B31-biomolecules-15-00088" class="usa-link" href="#B31-biomolecules-15-00088">31</a>].</p>
<p>Probably one of the most significant disadvantages when referring to peptides is their poor membrane permeability. This property is correlated to the number of hydrogen bonds in the molecule and is favored by their absence. Since peptides possess multiple amide bonds, high hydrophilicity, and, in most cases, large molecular weight, they present difficulties in diffusion through the epithelium [<a aria-describedby="B80-biomolecules-15-00088" class="usa-link" href="#B80-biomolecules-15-00088">80</a>]. The stratum corneum is very lipophilic and serves as a barrier to hydrophilic compounds, such as peptides. As a result, small molecules diffuse more easily through the layers of the skin [<a aria-describedby="B81-biomolecules-15-00088" class="usa-link" href="#B81-biomolecules-15-00088">81</a>]. The permeability of peptides through the skin depends on various factors such as the peptides physicochemical properties, integrity, thickness of the stratum corneum, area of application, duration of contact, and pharmaco-technical properties of the formulation. For better permeability, molecules should have a molecular weight of less than 500 Da, log of partition coefficient octanol/water between 1 and 3, no or few polar centers, moderate solubility (over 1 mg/mL), and melting point under 200 °C [<a aria-describedby="B70-biomolecules-15-00088" class="usa-link" href="#B70-biomolecules-15-00088">70</a>]. Additionally, positively charged peptides can facilitate better permeation through membranes as opposed to negatively charged ones. In the context of biological systems where membranes often carry a net negative charge, they interact strongly with these anionic charges, promoting adhesion to the membrane [<a aria-describedby="B82-biomolecules-15-00088" class="usa-link" href="#B82-biomolecules-15-00088">82</a>]. In particular, the foremost challenge is delivery to the target since most oligopeptides with high molecular weight and low lipophilicity are described as poor in osmosis [<a aria-describedby="B13-biomolecules-15-00088" class="usa-link" href="#B13-biomolecules-15-00088">13</a>]. Various methods to enhance peptide penetration have been developed, such as chemical modification to form a conjugate with increased lipophilicity, encapsulation into lipophilic carriers, and penetration enhancers [<a aria-describedby="B83-biomolecules-15-00088" class="usa-link" href="#B83-biomolecules-15-00088">83</a>].</p>
<p>When referring to their physicochemical properties, another limitation is their poor solubility at high concentrations. Some bioactive peptides possess hydrophobic properties and demonstrate low aqueous solubility at high concentrations. To address this challenge, products can be formulated with multiple peptides at lower concentrations, improving solubility while maintaining the desired level of bioactivity. Their solubility depends on the physical properties of the amino acids and the length of the chain, directly influencing the permeability through the epithelium [<a aria-describedby="B7-biomolecules-15-00088" class="usa-link" href="#B7-biomolecules-15-00088">7</a>].</p>
<p>Moreover, cosmetic peptides can face incompatibilities with various ingredients or environmental factors, impacting their stability, efficacy, and safety. Peptides are molecules composed of many peptide bonds, susceptible to degradation by enzymes such as proteases, which are largely distributed in the whole skin or within formulations, which can reduce their efficacy. Intrinsic factors, like aging, and extrinsic factors, such as UV exposure, pollution, and extreme weather conditions, can lead to heightened enzymatic activity in the skin and peptide degradation [<a aria-describedby="B84-biomolecules-15-00088" class="usa-link" href="#B84-biomolecules-15-00088">84</a>]. Peptide incompatibilities can result in degradation, reduced efficacy, or altered bioactivity. The effectiveness of cosmetic peptides can vary significantly due to several factors. These include the specific peptide sequence or the properties of the amino acids, which determine their bioactivity, stability, and interaction with target skin cells [<a aria-describedby="B85-biomolecules-15-00088" class="usa-link" href="#B85-biomolecules-15-00088">85</a>].</p>
<p>Furthermore, their molecular size and structure influence their ability to penetrate the skin barrier and reach the intended target site. Environmental factors, such as pH, temperature, and interactions with other ingredients in the formulation, can also impact their stability and functionality [<a aria-describedby="B12-biomolecules-15-00088" class="usa-link" href="#B12-biomolecules-15-00088">12</a>]. As a result, the development of peptide-based cosmetics requires careful consideration of these variables to ensure consistent and reliable performance in delivering the desired skin benefits. Most bioactivity studies are conducted using in vitro assays, as these provide a cost-effective method for assessing preliminary biological activity. Moreover, the variable effectiveness associated with peptides may be connected to the inclusion/exclusion criteria of the studys participants: skin phenotype, age, wrinkle depth, photo aging signs, dermatological disorders, previous invasive, non-invasive, or topical treatments [<a aria-describedby="B86-biomolecules-15-00088" class="usa-link" href="#B86-biomolecules-15-00088">86</a>]. However, there remains a significant shortage of in vivo clinical trials to confirm the efficacy of bioactive peptides with potential benefits in the cosmeceutical industry [<a aria-describedby="B7-biomolecules-15-00088" class="usa-link" href="#B7-biomolecules-15-00088">7</a>].</p></section><section id="sec5-biomolecules-15-00088"><h2 class="pmc_sec_title">5. Methods to Improve Peptide Dermal Delivery</h2>
<p>Different methods have been developed to overcome these limitations and facilitate the transport of peptides.</p>
<section id="sec5dot1-biomolecules-15-00088"><h3 class="pmc_sec_title">5.1. Chemical Penetration Enhancers</h3>
<p>Chemical penetration enhancers (CPE) are inactive compounds that can integrate into the stratum corneum, alter its properties, and, thereby, improve drug permeation. The main mechanism of action of chemical enhancers is based on the disruption of the lipid layer of the stratum corneum and the interaction with lipids, proteins, and keratinocytes [<a aria-describedby="B87-biomolecules-15-00088" class="usa-link" href="#B87-biomolecules-15-00088">87</a>]. In addition, these substances improve drug partition through the skin. An ideal chemical penetration enhancer should be inexpensive, compatible with the peptide, non-toxic, and biocompatible [<a aria-describedby="B88-biomolecules-15-00088" class="usa-link" href="#B88-biomolecules-15-00088">88</a>]. Propylene glycol, oleic acid, water, and surfactants improve the absorption of active ingredients in cosmetics. Other chemical enhancers, such as fatty acids, sulfoxide, and nitrone, interfere with the lipid layers organization and increase transcutaneous penetration. A notable disadvantage is their tendency to irritate the skin after prolonged use [<a aria-describedby="B89-biomolecules-15-00088" class="usa-link" href="#B89-biomolecules-15-00088">89</a>]. The classification of CPE is mostly based on their chemical structure since many of them exhibit mixed mechanisms of action, as presented in <a class="usa-link" href="#biomolecules-15-00088-t003">Table 3</a> [<a aria-describedby="B90-biomolecules-15-00088" class="usa-link" href="#B90-biomolecules-15-00088">90</a>,<a aria-describedby="B91-biomolecules-15-00088" class="usa-link" href="#B91-biomolecules-15-00088">91</a>,<a aria-describedby="B92-biomolecules-15-00088" class="usa-link" href="#B92-biomolecules-15-00088">92</a>,<a aria-describedby="B93-biomolecules-15-00088" class="usa-link" href="#B93-biomolecules-15-00088">93</a>].</p>
<section class="tw xbox font-sm" id="biomolecules-15-00088-t003"><h4 class="obj_head">Table 3.</h4>
<div class="caption p"><p>Main types of chemical penetration enhancers used in peptide formulations.</p></div>
<div class="tbl-box p" tabindex="0"><table class="content" frame="hsides" rules="groups">
<thead><tr>
<th align="center" colspan="1" rowspan="1" valign="middle">Class of CPE</th>
<th align="center" colspan="1" rowspan="1" valign="middle">Examples</th>
<th align="center" colspan="1" rowspan="1" valign="middle">Applications</th>
<th align="center" colspan="1" rowspan="1" valign="middle">Mechanism of Action</th>
<th align="center" colspan="1" rowspan="1" valign="middle">Advantages</th>
<th align="center" colspan="1" rowspan="1" valign="middle">Disadvantages</th>
<th align="center" colspan="1" rowspan="1" valign="middle">References</th>
</tr></thead>
<tbody>
<tr>
<td align="center" colspan="1" rowspan="1" valign="middle">Sulfoxides</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Dimethylsulfoxide (DMSO)<br/>Dimethylformamide (DMF)<br/>Dimethylacetamide (DMAC)</td>
<td align="center" colspan="1" rowspan="1" valign="middle">PKEK</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Alters the intercellular keratin structure.</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Enhanced permeation of hydrophilic as well as hydrophobic drugs.</td>
<td align="center" colspan="1" rowspan="1" valign="middle">At high concentrations, it can cause erythema, scaling, contact urticaria, stinging and burning feelings, and produce a malodorous metabolite in the breath.</td>
<td align="center" colspan="1" rowspan="1" valign="middle">[<a aria-describedby="B94-biomolecules-15-00088" class="usa-link" href="#B94-biomolecules-15-00088">94</a>]</td>
</tr>
<tr>
<td align="center" colspan="1" rowspan="1" valign="middle">Fatty acids</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Oleic acid<br/>Lauric acid<br/>Caprylic acid</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Palmitoyl pentapeptide-4, Acetyl hexapeptide-8</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Interaction and disruption of the lipid layer.<br/>Increases skin diffusion.</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Similar hydrophobicity to the lipids in the stratum corneum.</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Dermal side effects.</td>
<td align="center" colspan="1" rowspan="1" valign="middle">[<a aria-describedby="B95-biomolecules-15-00088" class="usa-link" href="#B95-biomolecules-15-00088">95</a>,<a aria-describedby="B96-biomolecules-15-00088" class="usa-link" href="#B96-biomolecules-15-00088">96</a>]</td>
</tr>
<tr>
<td align="center" colspan="1" rowspan="1" valign="middle">Alcohols</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Ethanol<br/>Buthanol<br/>Propanol<br/>Lauryl alcohol</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Acetyl hexapeptide-8, Palmitoyl tetrapeptide-7, Palmitoyl tripeptide-1, Dipeptide-2</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Solvent increases the solubility of the peptide.<br/>Modifies the thermodynamic activity of the drug within the formulation.<br/>Disrupts the polar head from the lipid layer.</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Rapid permeation.</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Short residence in the skin due to its volatility.</td>
<td align="center" colspan="1" rowspan="1" valign="middle">[<a aria-describedby="B86-biomolecules-15-00088" class="usa-link" href="#B86-biomolecules-15-00088">86</a>]</td>
</tr>
<tr>
<td align="center" colspan="1" rowspan="1" valign="middle">Glycols</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Propylene glycol<br/>Dipropylene glycol</td>
<td align="center" colspan="1" rowspan="1" valign="middle">PKEK, Acetyl hexapeptide-8, Tetrapeptide-68, Rice peptides</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Cosolvent<br/>Gradient concentration mechanism<br/>Improves the partition properties of substances.</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Synergic action when used with other CPE, e.g., oleic acid.</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Increases transepidermal water loss and protease activity.<br/>Reduces the barrier role of the skin.</td>
<td align="center" colspan="1" rowspan="1" valign="middle">[<a aria-describedby="B81-biomolecules-15-00088" class="usa-link" href="#B81-biomolecules-15-00088">81</a>,<a aria-describedby="B97-biomolecules-15-00088" class="usa-link" href="#B97-biomolecules-15-00088">97</a>,<a aria-describedby="B98-biomolecules-15-00088" class="usa-link" href="#B98-biomolecules-15-00088">98</a>,<a aria-describedby="B99-biomolecules-15-00088" class="usa-link" href="#B99-biomolecules-15-00088">99</a>]</td>
</tr>
<tr>
<td align="center" colspan="1" rowspan="1" valign="middle">Urea</td>
<td align="center" colspan="1" rowspan="1" valign="middle">
</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Palmitoyl tripeptide-38</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Increases the water content in the skin.<br/>Activates keratolytic activity.</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Very high solubility in water.<br/>Promotes skin rehydration.</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Modest penetration-enhancing activity.</td>
<td align="center" colspan="1" rowspan="1" valign="middle">[<a aria-describedby="B100-biomolecules-15-00088" class="usa-link" href="#B100-biomolecules-15-00088">100</a>]</td>
</tr>
<tr>
<td align="center" colspan="1" rowspan="1" valign="middle">Terpenes, terpenoids and essential oils</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Monoterpenes: D-Limonene, Menthol, Cineol, Carvacrol<br/>Sesquiterpenes: Farnesol, Neridol, Bisabolol</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Decapeptide-12, Palmitoyl pentapeptide-4</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Modifies the solvent nature of the stratum corneum.<br/>Improves substance partition<br/>Disrupts the lipid bilayer.</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Less skin irritation<br/>polar terpenes improve the permeation of hydrophilic molecules;<br/>non-polar terpenes (D-limolene) improve the penetration of hydrophobic molecules.</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Volatile compounds.</td>
<td align="center" colspan="1" rowspan="1" valign="middle">[<a aria-describedby="B101-biomolecules-15-00088" class="usa-link" href="#B101-biomolecules-15-00088">101</a>,<a aria-describedby="B102-biomolecules-15-00088" class="usa-link" href="#B102-biomolecules-15-00088">102</a>]</td>
</tr>
<tr>
<td align="center" colspan="1" rowspan="1" valign="middle">Surfactants</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Anionic: sodium lauryl sulfate<br/>Cationic: alkyl dimethylbenzyl ammonium chloride, cetyltrimethylammonium bromide<br/>Nonionic: polysorbate 80 (Tween 80), dodecyl betaine</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Silk peptides, Palmitoyl tripeptide-8, Pentapeptide-18</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Solubilizes the lipids of the skin.<br/>Disrupts the lipid and protein domains.<br/>Interacts with intercellular keratin.</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Amphiphilic molecules<br/>and non-ionic surfactants exhibit less irritating side effects.<br/>Anionic surfactants present better permeation effects.</td>
<td align="center" colspan="1" rowspan="1" valign="middle">Anionic and cationic surfactants are powerful irritants.<br/>Increased transepidermal water loss;<br/>non-ionic surfactants have only minor enhancement effects in human skin.</td>
<td align="center" colspan="1" rowspan="1" valign="middle">[<a aria-describedby="B18-biomolecules-15-00088" class="usa-link" href="#B18-biomolecules-15-00088">18</a>,<a aria-describedby="B103-biomolecules-15-00088" class="usa-link" href="#B103-biomolecules-15-00088">103</a>,<a aria-describedby="B104-biomolecules-15-00088" class="usa-link" href="#B104-biomolecules-15-00088">104</a>]</td>
</tr>
</tbody>
</table></div>
</section><p>In addition to chemical enhancers, physical methods such as electroporation, microneedles, iontophoresis, ultrasound, and thermal ablation can increase the permeation through the stratum corneum <a class="usa-link" href="#biomolecules-15-00088-f004">Figure 4</a> [<a aria-describedby="B101-biomolecules-15-00088" class="usa-link" href="#B101-biomolecules-15-00088">101</a>].</p>
<figure class="fig xbox font-sm" id="biomolecules-15-00088-f004"><h4 class="obj_head">Figure 4.</h4>
<p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&amp;p=PMC3&amp;id=11762834_biomolecules-15-00088-g004.jpg" target="_blank"><img alt="Figure 4" class="graphic zoom-in" loading="lazy" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5daa/11762834/4a3417ef7fad/biomolecules-15-00088-g004.jpg"/></a></p>
<figcaption><p>Physical methods used to enhance permeation.</p></figcaption></figure></section><section id="sec5dot2-biomolecules-15-00088"><h3 class="pmc_sec_title">5.2. Electroporation</h3>
<p>Electroporation uses high-voltage impulses that are applied to the skin for short periods of time. As a result, aqueous pores are created in the lipid bilayer of the skin, facilitating the transport of both small and large molecules (e.g., DNA, antibodies, peptides, proteins) [<a aria-describedby="B105-biomolecules-15-00088" class="usa-link" href="#B105-biomolecules-15-00088">105</a>,<a aria-describedby="B106-biomolecules-15-00088" class="usa-link" href="#B106-biomolecules-15-00088">106</a>]. The drug delivery can be controlled by duration, amplitude, and the number of pulses. Electroporation is often used in combination with other techniques to improve transmembrane transport and topical administration [<a aria-describedby="B105-biomolecules-15-00088" class="usa-link" href="#B105-biomolecules-15-00088">105</a>]. This method stands out through the advantages it possesses: the parameters can be adjusted to control the permeation rate; the pores created after the high-voltage impulses are reversible; the damage at the skin level is minor, and nonetheless, most drugs that penetrate the skin can be improved (macromolecules, water-soluble substances, charged molecules). Considering this, electroporation has garnered significant attention as an effective technique [<a aria-describedby="B107-biomolecules-15-00088" class="usa-link" href="#B107-biomolecules-15-00088">107</a>]. However, the above-mentioned method presents a series of limitations, such as inconsistent drug delivery quantities, limited understanding of the underlying mechanisms, and an unpractical electrode configuration [<a aria-describedby="B108-biomolecules-15-00088" class="usa-link" href="#B108-biomolecules-15-00088">108</a>]. Studies have shown that electroporation can be used for the transport of peptides, but further research is needed to determine the efficiency of this method for cosmetic purposes [<a aria-describedby="B109-biomolecules-15-00088" class="usa-link" href="#B109-biomolecules-15-00088">109</a>,<a aria-describedby="B110-biomolecules-15-00088" class="usa-link" href="#B110-biomolecules-15-00088">110</a>].</p></section><section id="sec5dot3-biomolecules-15-00088"><h3 class="pmc_sec_title">5.3. Iontophoresis</h3>
<p>Iontophoresis is a non-invasive technique that uses a low level of electrical current (&lt;500 microA/cm<sup>2</sup>) to transport molecules into the skin when placed under an electrode of the same polarity [<a aria-describedby="B111-biomolecules-15-00088" class="usa-link" href="#B111-biomolecules-15-00088">111</a>]. The iontophoresis system is comprised of a positive electrode anode, a negative electrode cathode, a drug reservoir, an electronic controller, and a power source. This principle is based on two mechanisms of action: electromigration and electro-osmosis. Firstly, charged molecules move under the influence of an electrical field while in contact with an electrode of the same polarity. This process is called electromigration. The movement is followed by the flow of water, named electro-osmosis, which can transport neutral molecules in the same direction [<a aria-describedby="B112-biomolecules-15-00088" class="usa-link" href="#B112-biomolecules-15-00088">112</a>]. Iontophoresis is mainly influenced by the applied current, the drug concentration and molecular size, the electrode type, and the pH of the donor [<a aria-describedby="B113-biomolecules-15-00088" class="usa-link" href="#B113-biomolecules-15-00088">113</a>]. Although it has many advantages, it may exhibit several side effects on the skin: irritation; erythema; and itching [<a aria-describedby="B114-biomolecules-15-00088" class="usa-link" href="#B114-biomolecules-15-00088">114</a>]. Cosmetic iontophoresis is one of the most evolved technologies used for dermal delivery to intensify the desired effect of the active ingredient. The method targets the epidermis and dermis, layers that are responsible for hydration, texture, firmness, regenerative properties, or pigmentation [<a aria-describedby="B115-biomolecules-15-00088" class="usa-link" href="#B115-biomolecules-15-00088">115</a>]. Krishnan et al. have studied the effect of iontophoretic techniques and the factors that influence the process of peptide dermal delivery. Alaninetryptophan dipeptide, acetyl hexapeptide-8, alanine alanine proline valine tetrapeptide, and decapeptide were analyzed under an iontophoresis current of 0.4 mA. The conclusions show that iontophoresis is an efficient method for the dermal delivery of peptides, but several parameters must be optimized to obtain improved results. This study showed that the dermal delivery of peptides is a complex process and is mainly affected by molecular weight, charge, donor pH, donor drug concentration, background electrolytes, and direction of the iontophoresis. It was observed that electroosmosis significantly impacted the permeation of higher molecular-weight peptides, whereas lower molecular-weight peptides were more influenced by electromigration [<a aria-describedby="B116-biomolecules-15-00088" class="usa-link" href="#B116-biomolecules-15-00088">116</a>].</p></section><section id="sec5dot4-biomolecules-15-00088"><h3 class="pmc_sec_title">5.4. Microneedles</h3>
<p>Microneedle (MN) array is another alternative approach for the physical permeation enhancement. They can penetrate the stratum corneum and create microchannels for the active ingredients to find their way into the deepest layers of the skin without causing permanent damage [<a aria-describedby="B117-biomolecules-15-00088" class="usa-link" href="#B117-biomolecules-15-00088">117</a>]. Microneedles have very small dimensions ranging from hundred microns in diameter, from units to tens of microns in size of tip and length of 252000 µm. They are painless, safe, efficient, easy to use, and can ensure a determined dose delivery. There are four types of microneedles: solid; coated; dissolving; and hollow microneedles [<a aria-describedby="B118-biomolecules-15-00088" class="usa-link" href="#B118-biomolecules-15-00088">118</a>].</p>
<ul class="list">
<li><p>Solid microneedles are typically used for pretreatment of the skin to create microchannels, after which they are removed, and a patch or another formulation containing the active ingredient is applied. This two-step method is known as “poke and patch” [<a aria-describedby="B119-biomolecules-15-00088" class="usa-link" href="#B119-biomolecules-15-00088">119</a>]. They deliver the substance through a passive diffusion to skin layers. They can be fabricated from silicon, polylactic acid, or stainless steel [<a aria-describedby="B120-biomolecules-15-00088" class="usa-link" href="#B120-biomolecules-15-00088">120</a>].</p></li>
<li><p>Coated microneedles are a type of solid microneedles that are coated with active ingredients. This can be achieved by immersing the tip of the needle in a coating solution or by spraying the active content with an atomizer [<a aria-describedby="B121-biomolecules-15-00088" class="usa-link" href="#B121-biomolecules-15-00088">121</a>];</p></li>
<li><p>Dissolving microneedles are usually obtained by encapsulating the drug into the polymer component of the needle. After penetrating the skin layer, the polymer tip dissolves completely and releases the incorporated substance. This particular type overcomes several problems encountered in the case of other microneedles, such as reducing the risk of injuries [<a aria-describedby="B122-biomolecules-15-00088" class="usa-link" href="#B122-biomolecules-15-00088">122</a>]. They are made from biocompatible and water-soluble materials (e.g., maltose, polyvinylpyrrolidone, hyaluronic acid, albumin) [<a aria-describedby="B123-biomolecules-15-00088" class="usa-link" href="#B123-biomolecules-15-00088">123</a>];</p></li>
<li><p>Hollow microneedles have very small channels that carry the drug from a separate reservoir to the desired release site. They are able to hold large quantities of substances and are often equipped with a micro-pump or a syringe to facilitate a controlled drug delivery system. Since only liquid ingredients can be used with this type of needle, they are less used for dermal delivery [<a aria-describedby="B124-biomolecules-15-00088" class="usa-link" href="#B124-biomolecules-15-00088">124</a>,<a aria-describedby="B125-biomolecules-15-00088" class="usa-link" href="#B125-biomolecules-15-00088">125</a>].</p></li>
</ul>
<p>This delivery method can be influenced by skin physiology, physicochemical properties, and environmental conditions (temperature and humidity). Low humidity can prevent the release of the substance into the skin; excess perspiration can impede microneedle patch adhesion, and very low or very high pH values can affect the permeability of the substance through the stratum corneum [<a aria-describedby="B126-biomolecules-15-00088" class="usa-link" href="#B126-biomolecules-15-00088">126</a>]. Mohammed et al. have demonstrated that microneedles are an efficient way to improve the dermal delivery of peptides, such as palmitoyl pentapeptide-4, with better results for small molecular weight peptides [<a aria-describedby="B127-biomolecules-15-00088" class="usa-link" href="#B127-biomolecules-15-00088">127</a>].</p></section><section id="sec5dot5-biomolecules-15-00088"><h3 class="pmc_sec_title">5.5. Sonophoresis</h3>
<p>Sonophoresis uses ultrasound waves at different frequencies to enhance skin permeability and facilitate drug delivery. The better effect is achieved at lower frequencies than high-frequency ultrasound (316 MHz). Although it has been researched for the past decade, the exact mechanism of sonophoresis is not yet understood [<a aria-describedby="B128-biomolecules-15-00088" class="usa-link" href="#B128-biomolecules-15-00088">128</a>]. There are a few mechanisms proposed for this method:</p>
<ul class="list">
<li><p>thermal effects produced by the absorption of ultrasounds;</p></li>
<li><p>the emergence and oscillation of gas bubbles that disrupt the lipid bilayer, known as cavitation;</p></li>
<li><p>mechanical effects [<a aria-describedby="B129-biomolecules-15-00088" class="usa-link" href="#B129-biomolecules-15-00088">129</a>];</p></li>
</ul>
<p>Cavitation is based on the growth, movement, and collapse of bubbles under ultrasound influence, which create shock waves, leading to the alteration of the lipid component of the stratum corneum [<a aria-describedby="B130-biomolecules-15-00088" class="usa-link" href="#B130-biomolecules-15-00088">130</a>]. The intensity and duration of the treatment depend on the thermal effects; therefore, a combination of low-frequency and high-frequency ultrasound, with a synergic effect, has been found to avoid the overheating of the skin [<a aria-describedby="B131-biomolecules-15-00088" class="usa-link" href="#B131-biomolecules-15-00088">131</a>]. There are two approaches for the delivery of substances through sonophoresis. Firstly, the formulation is applied to the skin, and the ultrasound is performed immediately after. Secondly, the product can be applied on the desired site, left for a short period to start the absorption process, and then the ultrasound can be applied [<a aria-describedby="B132-biomolecules-15-00088" class="usa-link" href="#B132-biomolecules-15-00088">132</a>]. In a study conducted by Mutalik et al., it has been demonstrated that sonophoresis successfully enhanced the permeation of peptide dendrimers containing arginine, histidine, lysine, and glycine across the epidermic layer of the skin. A significant improvement was noted compared to the passive diffusion, thus paving the path for further application [<a aria-describedby="B133-biomolecules-15-00088" class="usa-link" href="#B133-biomolecules-15-00088">133</a>].</p></section><section id="sec5dot6-biomolecules-15-00088"><h3 class="pmc_sec_title">5.6. Laser Thermal Ablation</h3>
<p>Laser thermal ablation is another physical method used to improve drug dermal delivery. There are two types of laser conformation: full beam and fractional beam. Full-beam lasers affect the whole area where the laser is applied, resulting in erythema and slowed healing. Fractional lasers damage only partially the targeted area at a specific depth [<a aria-describedby="B134-biomolecules-15-00088" class="usa-link" href="#B134-biomolecules-15-00088">134</a>]. The main advantages are fast healing and a large diffusion area [<a aria-describedby="B135-biomolecules-15-00088" class="usa-link" href="#B135-biomolecules-15-00088">135</a>]. The principle of fractional laser involves three mechanisms: direct ablation; photomechanical wave; and photothermal effect. The skin barrier is ablated, and micropores are created, through which molecules are released and delivered to the deeper layers of the skin [<a aria-describedby="B136-biomolecules-15-00088" class="usa-link" href="#B136-biomolecules-15-00088">136</a>]. This is performed by the deposition of optical energy, which leads to water evaporation and micropore formation. This process depends on the wavelength, tissue thickness, pulse length, energy, and duration of laser exposure [<a aria-describedby="B137-biomolecules-15-00088" class="usa-link" href="#B137-biomolecules-15-00088">137</a>]. The different types of lasers used for dermal delivery are mentioned in <a class="usa-link" href="#biomolecules-15-00088-t004">Table 4</a> [<a aria-describedby="B138-biomolecules-15-00088" class="usa-link" href="#B138-biomolecules-15-00088">138</a>,<a aria-describedby="B139-biomolecules-15-00088" class="usa-link" href="#B139-biomolecules-15-00088">139</a>,<a aria-describedby="B140-biomolecules-15-00088" class="usa-link" href="#B140-biomolecules-15-00088">140</a>,<a aria-describedby="B141-biomolecules-15-00088" class="usa-link" href="#B141-biomolecules-15-00088">141</a>]. In the study conducted by Lee et al., it was demonstrated that laser treatment promoted peptide delivery of palmitoyl tripeptide-1 in the affected skin but showed fewer promising results in healthy skin. The confocal microscopy showed that peptides penetrated the skin along the microdots created by the fractional Nd:YAG (neodymium-doped yttrium aluminum garnet) and CO<sub>2</sub> lasers [<a aria-describedby="B142-biomolecules-15-00088" class="usa-link" href="#B142-biomolecules-15-00088">142</a>].</p>
<section class="tw xbox font-sm" id="biomolecules-15-00088-t004"><h4 class="obj_head">Table 4.</h4>
<div class="tbl-box p" tabindex="0"><table class="content" frame="hsides" rules="groups">
<thead><tr>
<th align="center" colspan="1" rowspan="1" valign="middle">Laser</th>
<th align="center" colspan="1" rowspan="1" valign="middle">Wavelength<br/>(nm)</th>
<th align="center" colspan="1" rowspan="1" valign="middle">Pulse Length</th>
</tr></thead>
<tbody>
<tr>
<td align="center" colspan="1" rowspan="1" valign="middle">CO<sub>2</sub>
</td>
<td align="center" colspan="1" rowspan="1" valign="middle">10,600</td>
<td align="center" colspan="1" rowspan="1" valign="middle">0.52.5 ps</td>
</tr>
<tr>
<td align="center" colspan="1" rowspan="1" valign="middle">Erbium:YAG</td>
<td align="center" colspan="1" rowspan="1" valign="middle">2940</td>
<td align="center" colspan="1" rowspan="1" valign="middle">500 μs</td>
</tr>
<tr>
<td align="center" colspan="1" rowspan="1" valign="middle">P.L.E.A.S.E. (Precise Lasers Epidermal System)</td>
<td align="center" colspan="1" rowspan="1" valign="middle">2940</td>
<td align="center" colspan="1" rowspan="1" valign="middle">3 μs</td>
</tr>
</tbody>
</table></div>
</section></section><section id="sec5dot7-biomolecules-15-00088"><h3 class="pmc_sec_title">5.7. Radiofrequency Thermal Ablation</h3>
<p>In radiofrequency thermal ablation, metallic microelectrodes similar to needles are placed directly on the skin, and a high-frequency current is applied (100500 kHz) to create micro-scale pathways. The exposure to radiofrequency causes ionic vibrations in the tissue, localized heat, water evaporation, and, in the end, ablation of cells [<a aria-describedby="B143-biomolecules-15-00088" class="usa-link" href="#B143-biomolecules-15-00088">143</a>]. Considering the size and density of the microchannels, the rate of drug delivery can be controlled. This method can enhance the permeation of hydrophilic macromolecules in a low-cost and easy way [<a aria-describedby="B144-biomolecules-15-00088" class="usa-link" href="#B144-biomolecules-15-00088">144</a>]. Its many advantages include the following:</p>
<ul class="list">
<li><p>formation of micro-channels in milliseconds;</p></li>
<li><p>the size and density of the micro-channels can be controlled;</p></li>
<li><p>use for the delivery of a wide range of substances [<a aria-describedby="B135-biomolecules-15-00088" class="usa-link" href="#B135-biomolecules-15-00088">135</a>].</p></li>
</ul>
<p>Xiang et al. studied the dermal delivery of acetyl hexapeptide-8 and palmitoyl pentapeptide-4 using radiofrequency technologies in a liposome formulation. The results showed notably effective synergic effects regarding collagen formation [<a aria-describedby="B145-biomolecules-15-00088" class="usa-link" href="#B145-biomolecules-15-00088">145</a>].</p></section><section id="sec5dot8-biomolecules-15-00088"><h3 class="pmc_sec_title">5.8. Dermal Delivery Using Nanosystems</h3>
<p>Another method of delivering peptides through the skins uppermost layer is using appropriate topical systems. Topical vehicles serve as carrier systems that facilitate the delivery of active molecules across the stratum corneum and deeper into the epidermis and dermis, diminishing the systemic absorption of these substances. The most commonly used topical vehicles are ointments, creams, gels, and lotions. The selection of a topical carrier system depends on factors such as the characteristics of the skin area to be treated and its size to ensure optimal application and contact of the product with the skin [<a aria-describedby="B146-biomolecules-15-00088" class="usa-link" href="#B146-biomolecules-15-00088">146</a>]. Classical topical formulations can be classified based on their viscosity, as either liquid or semisolid; the number of phases, which may be single-phase or two-phase systems; and the target site of drug action, which may be the skin itself (dermal) or another part of the body following systemic absorption (transdermal) [<a aria-describedby="B147-biomolecules-15-00088" class="usa-link" href="#B147-biomolecules-15-00088">147</a>].</p>
<p>One of the most promising dermal delivery systems that have gained a lot of interest in the cosmetical industry is nano-systems. This way, compounds are easier to deliver to the deeper layers of the skin. Nano-systems can significantly improve product effectiveness, enabling lower ingredient concentrations, thus reducing skin irritation and delivering higher amounts of active substances [<a aria-describedby="B148-biomolecules-15-00088" class="usa-link" href="#B148-biomolecules-15-00088">148</a>]. A few examples of nano-systems, their characteristics, and the cosmetic peptides incorporated in these types of formulations are listed in <a class="usa-link" href="#biomolecules-15-00088-t005">Table 5</a>.</p>
<section id="sec5dot8dot1-biomolecules-15-00088"><h4 class="pmc_sec_title">5.8.1. Nanoemulsions</h4>
<p>Nanoemulsions are colloidal dispersions comprised of two liquid phases, an aqueous and an oil phase, in which one is dispersed in the other with the help of a surfactant mixture, forming droplets between 20 and 200 nm [<a aria-describedby="B160-biomolecules-15-00088" class="usa-link" href="#B160-biomolecules-15-00088">160</a>]. They form isotropic, transparent, heterogeneous, and kinetically stable systems, manifesting flocculation and opalescence in time [<a aria-describedby="B161-biomolecules-15-00088" class="usa-link" href="#B161-biomolecules-15-00088">161</a>]. Nanoemulsions can be oil-in-water (O/W), where the lipophilic phase is dispersed in water, or water-in-oil (W/O), where small particles of water are dispersed in oil. Nevertheless, to add more complexity to this type of formulation, a double emulsion can be formed by obtaining water-in-oil-in-water (W/O/W) or oil-in-water-in-oil (O/W/O) emulsions. They present additional challenges in terms of stability due to being prone to degradation [<a aria-describedby="B162-biomolecules-15-00088" class="usa-link" href="#B162-biomolecules-15-00088">162</a>]. Nanoemulsion formulations stand out because they present good stability, weak light scattering, unique rheological properties, and the ability to increase the bioavailability of different types of compounds [<a aria-describedby="B163-biomolecules-15-00088" class="usa-link" href="#B163-biomolecules-15-00088">163</a>]. Samson et al. have studied the influence of a nanoemulsion on the permeability parameters of a copper peptide. The proposed formulation increased the permeability of the peptide through the skin compared to an aqueous solution, which cannot transport the active ingredient with or without a penetration enhancer. This study has proved that nanoemulsions are a viable option for the dermal delivery of peptides [<a aria-describedby="B164-biomolecules-15-00088" class="usa-link" href="#B164-biomolecules-15-00088">164</a>].</p></section><section id="sec5dot8dot2-biomolecules-15-00088"><h4 class="pmc_sec_title">5.8.2. Liposomes</h4>
<p>Liposomes are spherical vehicles that can have one or more bilayers (unilamellar, multilamellar) of phospholipids surrounding an aqueous center, with a diameter between 0.05 and 5 μm. They can be obtained from natural or synthetic-derived phospholipids, cholesterol, and polyethylene glycol-derived phospholipids [<a aria-describedby="B165-biomolecules-15-00088" class="usa-link" href="#B165-biomolecules-15-00088">165</a>]. The use of liposomes in nano-cosmetology offers numerous advantages, such as enhanced penetration and distribution of active ingredients, efficient delivery of active components, prolonged release time, increased stability of active ingredients, reduced unwanted side effects, and high biocompatibility [<a aria-describedby="B166-biomolecules-15-00088" class="usa-link" href="#B166-biomolecules-15-00088">166</a>]. The study conducted by Dymek et al. has demonstrated that liposomes can be used to incorporate peptides, such as GHKCu, in anti-aging cosmetic formulation [<a aria-describedby="B52-biomolecules-15-00088" class="usa-link" href="#B52-biomolecules-15-00088">52</a>]. Over time, it has been observed that conventional liposomes fail to penetrate the deeper layers of the skin, concentrating in the stratum corneum, as a result of their low potential to deform. This has led to the development of elastic/ultra-deformable liposomes to overcome the limitation. Such examples are ethosomes, niosomes, and transferosomes [<a aria-describedby="B167-biomolecules-15-00088" class="usa-link" href="#B167-biomolecules-15-00088">167</a>].</p></section><section id="sec5dot8dot3-biomolecules-15-00088"><h4 class="pmc_sec_title">5.8.3. Ethosomes</h4>
<p>Ethosomes are similar vesicles to liposomes, but they differ because they contain high amounts of ethanol. They are biodegradable, non-toxic, innovative, and biocompatible compounds that enable superior substance delivery [<a aria-describedby="B168-biomolecules-15-00088" class="usa-link" href="#B168-biomolecules-15-00088">168</a>]. The proposed mechanism for ethosome action is based on the interaction between ethosomes and skin lipids. Firstly, ethanol interacts with the polar head of the endogenous phospholipids, which increases the fluidity and reduces the consistency of the lipid layers. This enables the ethosomes to penetrate the skin with much more flexibility [<a aria-describedby="B169-biomolecules-15-00088" class="usa-link" href="#B169-biomolecules-15-00088">169</a>,<a aria-describedby="B170-biomolecules-15-00088" class="usa-link" href="#B170-biomolecules-15-00088">170</a>]. Secondly, “the ethosome effect” confers malleability and fusion with skin lipids, thus releasing the substance in the profound layers [<a aria-describedby="B171-biomolecules-15-00088" class="usa-link" href="#B171-biomolecules-15-00088">171</a>]. With this type of delivery system, peptides and proteins can be incorporated and delivered. The ethosomal system is a non-invasive method that ensures patient compliance because, in general, it is applied in gel or cream semi-solid form [<a aria-describedby="B172-biomolecules-15-00088" class="usa-link" href="#B172-biomolecules-15-00088">172</a>]. Nonetheless, they may produce skin irritation due to excipients and can imply higher costs of manufacturing [<a aria-describedby="B173-biomolecules-15-00088" class="usa-link" href="#B173-biomolecules-15-00088">173</a>]. Kim et al. developed transformer ethosomes composed of phosphatidylcholine and fatty acids containing palmitoyl pentapeptide-4 to enhance skin permeation. The results obtained from the in vitro skin permeation tests showed promising results, indicating that ethosomes can be used as nanocarriers for peptide delivery [<a aria-describedby="B154-biomolecules-15-00088" class="usa-link" href="#B154-biomolecules-15-00088">154</a>].</p></section><section id="sec5dot8dot4-biomolecules-15-00088"><h4 class="pmc_sec_title">5.8.4. Niosomes</h4>
<p>Niosomes are versatile delivery systems that are mainly comprised of non-ionic surfactants, cholesterol, or other amphiphilic molecules. Non-ionic surfactants present various roles, such as solubilizers, humectants, and permeability enhancers; thus, their use offers an advantage. In addition, cholesterol influences the fluidity and permeability of the lipidic bilayer [<a aria-describedby="B34-biomolecules-15-00088" class="usa-link" href="#B34-biomolecules-15-00088">34</a>]. The proposed mechanism is their fusion and interaction with skins lipids, combined with modified thermodynamic activity [<a aria-describedby="B174-biomolecules-15-00088" class="usa-link" href="#B174-biomolecules-15-00088">174</a>]. They have been widely researched for topical delivery because of their ability to enhance penetration through the skin and increase accumulation in the dermis [<a aria-describedby="B175-biomolecules-15-00088" class="usa-link" href="#B175-biomolecules-15-00088">175</a>]. Niosomes can carry both hydrophilic and hydrophobic molecules, are more stable and less expensive compared to liposomes, and are biodegradable, biocompatible, and non-toxic, representing a safer alternative [<a aria-describedby="B176-biomolecules-15-00088" class="usa-link" href="#B176-biomolecules-15-00088">176</a>]. Their advantages compared to other nanocarriers make them perfect candidates for peptide incorporation [<a aria-describedby="B177-biomolecules-15-00088" class="usa-link" href="#B177-biomolecules-15-00088">177</a>]. A study conducted by Badenhorst et al. was performed to assess the suitability of lipid-based systems to enhance the delivery of GHK, particularly niosomes. Their method assessed the stability of GHKCu when exposed to all excipients throughout formulation and storage, highlighting the chemical compatibility between the lipids and the peptides encapsulated within the vesicles [<a aria-describedby="B155-biomolecules-15-00088" class="usa-link" href="#B155-biomolecules-15-00088">155</a>].</p></section><section id="sec5dot8dot5-biomolecules-15-00088"><h4 class="pmc_sec_title">5.8.5. Solid Lipid Nanoparticles</h4>
<p>Solid lipid nanoparticles (SNLs) are colloidal particles, ranging between 10 and 1000 nm, in which the active substance is dissolved/ encapsulated in lipids. The main components they possess are lipids, surfactants, and co-surfactants. They have been developed to improve the solubility and bioavailability of both hydrophilic and lipophilic ingredients [<a aria-describedby="B178-biomolecules-15-00088" class="usa-link" href="#B178-biomolecules-15-00088">178</a>]. SNLs are spherical nanoparticles that have a lipid matrix containing the active ingredient and a surfactant surrounding layer to stabilize the system. During storage, they tend to change their conformation and suffer a crystallization process, which may lead to drug expulsion [<a aria-describedby="B179-biomolecules-15-00088" class="usa-link" href="#B179-biomolecules-15-00088">179</a>]. The advantages of SNLs are presented in <a class="usa-link" href="#biomolecules-15-00088-t006">Table 6</a> [<a aria-describedby="B180-biomolecules-15-00088" class="usa-link" href="#B180-biomolecules-15-00088">180</a>,<a aria-describedby="B181-biomolecules-15-00088" class="usa-link" href="#B181-biomolecules-15-00088">181</a>,<a aria-describedby="B182-biomolecules-15-00088" class="usa-link" href="#B182-biomolecules-15-00088">182</a>]. The efficiency of transepidermal transport using solid lipid nanoparticles incorporated with pentapeptide-18 was confirmed by a study performed by Pawłowska et al., in which they tested two cosmetic preparations differing only in the presence of SNLs. Application tests were carried out on females showing signs of aging in the periocular area. After 8 weeks of daily application, the results indicated an improvement in the appearance of the skin and a reduction in wrinkles [<a aria-describedby="B156-biomolecules-15-00088" class="usa-link" href="#B156-biomolecules-15-00088">156</a>].</p>
<section class="tw xbox font-sm" id="biomolecules-15-00088-t006"><h5 class="obj_head">Table 6.</h5>
<div class="caption p"><p>The main advantages of solid lipid nanoparticles.</p></div>
<div class="tbl-box p" tabindex="0"><table class="content" frame="hsides" rules="groups">
<thead><tr><th align="center" colspan="1" rowspan="1" valign="middle">Advantages of SNLs</th></tr></thead>
<tbody>
<tr><td align="center" colspan="1" rowspan="1" valign="middle">Controlled and targeted drug release</td></tr>
<tr><td align="center" colspan="1" rowspan="1" valign="middle">Strong skin adhesion</td></tr>
<tr><td align="center" colspan="1" rowspan="1" valign="middle">Good reproducibility and large-scale production</td></tr>
<tr><td align="center" colspan="1" rowspan="1" valign="middle">Improved stability of the active ingredient</td></tr>
<tr><td align="center" colspan="1" rowspan="1" valign="middle">Water based technology</td></tr>
<tr><td align="center" colspan="1" rowspan="1" valign="middle">Biocompatibility and biodegradability</td></tr>
<tr><td align="center" colspan="1" rowspan="1" valign="middle">Lipophilic and hydrophilic molecule incorporation</td></tr>
<tr><td align="center" colspan="1" rowspan="1" valign="middle">Affordable compared to other nanocarriers</td></tr>
<tr><td align="center" colspan="1" rowspan="1" valign="middle">Increased permeation</td></tr>
</tbody>
</table></div>
</section></section><section id="sec5dot8dot6-biomolecules-15-00088"><h4 class="pmc_sec_title">5.8.6. Nanostructured Lipid Carriers</h4>
<p>Nanostructured lipid carriers (NLC) are second-generation lipid nanocarriers developed to overcome the limitations of SNLs. They have a composition of solid and liquid lipids (70:30) and an aqueous surfactant. The liquid lipids incorporated in the matrix prevent the formation of an ordered crystalline lattice found in the SNL [<a aria-describedby="B183-biomolecules-15-00088" class="usa-link" href="#B183-biomolecules-15-00088">183</a>]. Because NLCs have an unorganized matrix, there is more space for the active substance, increasing the drug-loading capacity and preventing their expulsion [<a aria-describedby="B184-biomolecules-15-00088" class="usa-link" href="#B184-biomolecules-15-00088">184</a>]. There are three types of nanostructured lipid carriers. In the imperfect crystal type, solid lipids are mixed with liquid lipids, varying the chain length of fatty acids to maintain an unordered structure [<a aria-describedby="B185-biomolecules-15-00088" class="usa-link" href="#B185-biomolecules-15-00088">185</a>]. The second type (multiple-type) contains a high quantity of liquid lipids in which the active ingredient is incorporated, forming a nano oil-based compartment. The third type (amorphous model) is obtained by mixing the solid and liquid lipids in a specific way to avoid crystallization and maintain an amorphous state, minimizing drug leakage [<a aria-describedby="B186-biomolecules-15-00088" class="usa-link" href="#B186-biomolecules-15-00088">186</a>]. When used for cosmetic dermal delivery, they possess the advantage of preventing transepidermal water loss, improving hydration, and facilitating occlusion and emollience [<a aria-describedby="B185-biomolecules-15-00088" class="usa-link" href="#B185-biomolecules-15-00088">185</a>]. Considering this, NLCs have proved to be innovative and promising carriers for dermal delivery. In their paper, Zielinska et al. have given an overview of NLC products on the market, among which a reconstructive cream with acetyl hexapeptide-3 is included [<a aria-describedby="B157-biomolecules-15-00088" class="usa-link" href="#B157-biomolecules-15-00088">157</a>].</p></section><section id="sec5dot8dot7-biomolecules-15-00088"><h4 class="pmc_sec_title">5.8.7. Lipid Nanocapsules</h4>
<p>Lipid nanocapsules (LNC) are a novel carrier system developed as an alternative to conventional delivery methods. They consist of a lipid matrix, in which the active substance can be found, surrounded by capsules of hydrophilic and lipophilic surfactants. By altering the composition, the properties of LNCs can be changed, facilitating the incorporation of a wide range of substances [<a aria-describedby="B187-biomolecules-15-00088" class="usa-link" href="#B187-biomolecules-15-00088">187</a>]. Initially, they were developed to enhance the delivery of lipophilic drugs, but thanks to their size and composition, hydrophilic substances can also be included [<a aria-describedby="B188-biomolecules-15-00088" class="usa-link" href="#B188-biomolecules-15-00088">188</a>]. Lipid nanocapsules can permeate the skin by loosening the structure of the lipid bilayer due to fluidization, polarity changes, and lipid exchange. LNCs present significant potential for dermal and topical application as a result of their small size, high encapsulation efficiency, biocompatibility, and stability of encapsulated substances [<a aria-describedby="B189-biomolecules-15-00088" class="usa-link" href="#B189-biomolecules-15-00088">189</a>]. Lipotec has developed a new delivery system based on polymeric nanocapsules that contain microemulsions of water in oil, which can incorporate peptides such as GHK, Tripeptide-10 Citrulline, or Pentapeptide-4 [<a aria-describedby="B158-biomolecules-15-00088" class="usa-link" href="#B158-biomolecules-15-00088">158</a>].</p></section><section id="sec5dot8dot8-biomolecules-15-00088"><h4 class="pmc_sec_title">5.8.8. Nanospheres</h4>
<p>Nanospheres are used in cosmetic preparations to deliver active ingredients to the deeper layers of the skin, exhibiting anti-wrinkle, hydrating, and anti-acne effects [<a aria-describedby="B190-biomolecules-15-00088" class="usa-link" href="#B190-biomolecules-15-00088">190</a>]. They differ from nanocapsules in terms of composition, with nanospheres having a polymeric matrix system. The active substance can be dissolved in the matrix or adsorbed on the polymeric surface [<a aria-describedby="B191-biomolecules-15-00088" class="usa-link" href="#B191-biomolecules-15-00088">191</a>]. This type of system was used to incorporate acetyl octapeptide-3 to find new methods for anti-wrinkle therapy and can be used as an alternative drug release system to Botox treatment [<a aria-describedby="B26-biomolecules-15-00088" class="usa-link" href="#B26-biomolecules-15-00088">26</a>].</p></section><section id="sec5dot8dot9-biomolecules-15-00088"><h4 class="pmc_sec_title">5.8.9. Liquid Crystalline Nanoparticles</h4>
<p>Liquid crystalline nanoparticles are an emerging class of nanomaterials developed for enhanced drug delivery. Their properties can be adjusted to accommodate a large number of ingredients: peptides; proteins; and nucleic acids [<a aria-describedby="B192-biomolecules-15-00088" class="usa-link" href="#B192-biomolecules-15-00088">192</a>]. They can be divided into thermotropic and lyotropic crystals, the latter being used for drug delivery. Lyotropic liquid crystals are amphiphilic molecules existing in mesophases that can undergo phase transition depending on the water content, resulting in hexagonal, cubic, and lamellar phases. In addition to the aqueous component, they contain a mixture of surfactants [<a aria-describedby="B193-biomolecules-15-00088" class="usa-link" href="#B193-biomolecules-15-00088">193</a>]. They present a few advantages over the existing nanocarriers: multi-drug loading; controlled drug release; reduced toxicity due to the use of biocompatible lipids; and improved permeation of macromolecules such as peptides [<a aria-describedby="B194-biomolecules-15-00088" class="usa-link" href="#B194-biomolecules-15-00088">194</a>]. Akhlaghi et al. have studied the stability and release profile of cubosomes loaded with palmitoyl-GHK and palmitoyl tetrapeptide-7, the results suggesting that these formulations can have applications in the development of topical anti-aging systems [<a aria-describedby="B159-biomolecules-15-00088" class="usa-link" href="#B159-biomolecules-15-00088">159</a>].</p></section></section></section><section id="sec6-biomolecules-15-00088"><h2 class="pmc_sec_title">6. Conclusions</h2>
<p>In conclusion, peptides are promising active ingredients that have raised the interest of many scientists in the cosmetic industry due to their unique anti-aging properties. The mentioned studies demonstrate their efficacy in products used to improve the appearance of aging signs and highlight the need for further research to achieve their full potential. Cosmetic peptides have various mechanisms of action that allow them to modulate intracellular pathways, thus also preventing the development of new aging signs such as wrinkles, fine lines, loss of firmness, and elasticity. Despite the numerous advantages that recommend peptides for anti-aging use, their shortcomings often limit their application. The advances in product formulation have facilitated ways to overcome their limitations regarding membrane permeability and dermal delivery. Novel nano-formulations are now available to incorporate cosmetic peptides for easier delivery into the dermis. Nevertheless, chemical enhancers and physical methods such as electroporation, microneedles, sonophoresis, and thermal ablation are methods that can be used for better permeation through the stratum corneum. Considering this, cosmetic peptides are active ingredients that can be used to develop innovative products with enhanced permeability through the skin barrier and superior efficiency.</p></section><section class="ack" id="ack1"><h2 class="pmc_sec_title">Acknowledgments</h2>
<p>This article is part of a PhD thesis from the Doctoral School of Medicine and Pharmacy within the George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, titled “Amino acids, peptides, and antioxidant compounds in skin rejuvenation and their use in dermatocosmetology”, which will be presented by Andrada Pintea.</p></section><section id="notes1"><h2 class="pmc_sec_title">Author Contributions</h2>
<p>Conceptualization, A.P.; investigation, A.P., A.M. and C.P.; software, R.-A.V. and A.M.; resources, A.P., M.B., P.A., E.M.R. and A.C.; data curation, A.P., A.M. and C.P.; writing—original draft preparation, A.P., A.M. and C.P.; writing—review and editing, R.-A.V., M.B., P.A., E.M.R. and A.C.; visualization, A.P.; supervision, R.-A.V. and A.C.; project administration, A.P. and A.C. All authors have read and agreed to the published version of the manuscript.</p></section><section id="notes2"><h2 class="pmc_sec_title">Institutional Review Board Statement</h2>
<p>Not applicable.</p></section><section id="notes3"><h2 class="pmc_sec_title">Informed Consent Statement</h2>
<p>Not applicable.</p></section><section id="notes4"><h2 class="pmc_sec_title">Data Availability Statement</h2>
<p>No new data were created or analyzed in this study. Data sharing is not applicable to this article.</p></section><section id="notes5"><h2 class="pmc_sec_title">Conflicts of Interest</h2>
<p>The authors declare no conflicts of interest.</p></section><section id="funding-statement1" lang="en"><h2 class="pmc_sec_title">Funding Statement</h2>
<p>This research received no external funding.</p></section><section class="fn-group" id="fn-group1"><h2 class="pmc_sec_title">Footnotes</h2>
<div class="fn-group p font-secondary-light font-sm"><div class="fn p" id="fn2"><p><strong>Disclaimer/Publishers Note:</strong> The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.</p></div></div></section><section class="ref-list" id="ref-list1"><h2 class="pmc_sec_title">References</h2>
<section id="ref-list1_sec2"><ul class="ref-list font-sm">
<li id="B1-biomolecules-15-00088">
<span class="label">1.</span><cite>Dreno B., Araviiskaia E., Berardesca E., Bieber T., Hawk J., Sanchez-Viera M., Wolkenstein P. The Science of Dermocosmetics and Its Role in Dermatology. J. Eur. Acad. Dermatol. Venereol. 2014;28:14091417. doi: 10.1111/jdv.12497.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1111/jdv.12497" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/24684296/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=J.%20Eur.%20Acad.%20Dermatol.%20Venereol.&amp;title=The%20Science%20of%20Dermocosmetics%20and%20Its%20Role%20in%20Dermatology&amp;author=B.%20Dreno&amp;author=E.%20Araviiskaia&amp;author=E.%20Berardesca&amp;author=T.%20Bieber&amp;author=J.%20Hawk&amp;volume=28&amp;publication_year=2014&amp;pages=1409-1417&amp;pmid=24684296&amp;doi=10.1111/jdv.12497&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B2-biomolecules-15-00088">
<span class="label">2.</span><cite>Oliveira R., Ferreira J., Azevedo L.F., Almeida I.F. An Overview of Methods to Characterize Skin Type: Focus on Visual Rating Scales and Self-Report Instruments. Cosmetics. 2023;10:14. doi: 10.3390/cosmetics10010014.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3390/cosmetics10010014" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Cosmetics&amp;title=An%20Overview%20of%20Methods%20to%20Characterize%20Skin%20Type:%20Focus%20on%20Visual%20Rating%20Scales%20and%20Self-Report%20Instruments&amp;author=R.%20Oliveira&amp;author=J.%20Ferreira&amp;author=L.F.%20Azevedo&amp;author=I.F.%20Almeida&amp;volume=10&amp;publication_year=2023&amp;pages=14&amp;doi=10.3390/cosmetics10010014&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B3-biomolecules-15-00088">
<span class="label">3.</span><cite>Li C., Fu Y., Dai H., Wang Q., Gao R., Zhang Y. Recent Progress in Preventive Effect of Collagen Peptides on Photoaging Skin and Action Mechanism. Food Sci. Hum. Wellness. 2022;11:218229. doi: 10.1016/j.fshw.2021.11.003.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1016/j.fshw.2021.11.003" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Food%20Sci.%20Hum.%20Wellness&amp;title=Recent%20Progress%20in%20Preventive%20Effect%20of%20Collagen%20Peptides%20on%20Photoaging%20Skin%20and%20Action%20Mechanism&amp;author=C.%20Li&amp;author=Y.%20Fu&amp;author=H.%20Dai&amp;author=Q.%20Wang&amp;author=R.%20Gao&amp;volume=11&amp;publication_year=2022&amp;pages=218-229&amp;doi=10.1016/j.fshw.2021.11.003&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B4-biomolecules-15-00088">
<span class="label">4.</span><cite>Jadach B., Mielcarek Z., Osmałek T. Use of Collagen in Cosmetic Products. Curr. Issues Mol. Biol. 2024;46:20432070. doi: 10.3390/cimb46030132.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3390/cimb46030132" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC10968853/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/38534748/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Curr.%20Issues%20Mol.%20Biol.&amp;title=Use%20of%20Collagen%20in%20Cosmetic%20Products&amp;author=B.%20Jadach&amp;author=Z.%20Mielcarek&amp;author=T.%20Osma%C5%82ek&amp;volume=46&amp;publication_year=2024&amp;pages=2043-2070&amp;pmid=38534748&amp;doi=10.3390/cimb46030132&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B5-biomolecules-15-00088">
<span class="label">5.</span><cite>Aldag C., Teixeira D.N., Leventhal P.S. Skin Rejuvenation Using Cosmetic Products Containing Growth Factors, Cytokines, and Matrikines: A Review of the Literature. Clin. Cosmet. Investig. Dermatol. 2016;9:411419. doi: 10.2147/CCID.S116158.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.2147/CCID.S116158" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC5108505/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/27877059/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Clin.%20Cosmet.%20Investig.%20Dermatol.&amp;title=Skin%20Rejuvenation%20Using%20Cosmetic%20Products%20Containing%20Growth%20Factors,%20Cytokines,%20and%20Matrikines:%20A%20Review%20of%20the%20Literature&amp;author=C.%20Aldag&amp;author=D.N.%20Teixeira&amp;author=P.S.%20Leventhal&amp;volume=9&amp;publication_year=2016&amp;pages=411-419&amp;pmid=27877059&amp;doi=10.2147/CCID.S116158&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B6-biomolecules-15-00088">
<span class="label">6.</span><cite>Juncan A.M., Lung C. Formulation and Optimizing of a Anti-Aging Cosmetic Cream. Stud. UBB Phys. 2016;61:101110.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Stud.%20UBB%20Phys.&amp;title=Formulation%20and%20Optimizing%20of%20a%20Anti-Aging%20Cosmetic%20Cream&amp;author=A.M.%20Juncan&amp;author=C.%20Lung&amp;volume=61&amp;publication_year=2016&amp;pages=101-110&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B7-biomolecules-15-00088">
<span class="label">7.</span><cite>Aguilar-Toalá J.E., Hernández-Mendoza A., González-Córdova A.F., Vallejo-Cordoba B., Liceaga A.M. Potential Role of Natural Bioactive Peptides for Development of Cosmeceutical Skin Products. Peptides. 2019;122:170170. doi: 10.1016/j.peptides.2019.170170.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1016/j.peptides.2019.170170" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/31574281/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Peptides&amp;title=Potential%20Role%20of%20Natural%20Bioactive%20Peptides%20for%20Development%20of%20Cosmeceutical%20Skin%20Products&amp;author=J.E.%20Aguilar-Toal%C3%A1&amp;author=A.%20Hern%C3%A1ndez-Mendoza&amp;author=A.F.%20Gonz%C3%A1lez-C%C3%B3rdova&amp;author=B.%20Vallejo-Cordoba&amp;author=A.M.%20Liceaga&amp;volume=122&amp;publication_year=2019&amp;pages=170170&amp;pmid=31574281&amp;doi=10.1016/j.peptides.2019.170170&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B8-biomolecules-15-00088">
<span class="label">8.</span><cite>Yang Y., Dias C.L. Peptide-Membrane Binding: Effects of the Amino Acid Sequence. J. Phys. Chem. B. 2023;127:912920. doi: 10.1021/acs.jpcb.2c06404.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1021/acs.jpcb.2c06404" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/36652390/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=J.%20Phys.%20Chem.%20B&amp;title=Peptide-Membrane%20Binding:%20Effects%20of%20the%20Amino%20Acid%20Sequence&amp;author=Y.%20Yang&amp;author=C.L.%20Dias&amp;volume=127&amp;publication_year=2023&amp;pages=912-920&amp;pmid=36652390&amp;doi=10.1021/acs.jpcb.2c06404&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B9-biomolecules-15-00088">
<span class="label">9.</span><cite>Liu C.I., Chan Y.C., Chen W.Y., Ruaan R.C. Effect of Amino Acid Sequence on the Hydrophobicity of Small Peptides. Colloids Surf. A Physicochem. Eng. Asp. 2005;266:175180. doi: 10.1016/j.colsurfa.2005.06.023.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1016/j.colsurfa.2005.06.023" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Colloids%20Surf.%20A%20Physicochem.%20Eng.%20Asp.&amp;title=Effect%20of%20Amino%20Acid%20Sequence%20on%20the%20Hydrophobicity%20of%20Small%20Peptides&amp;author=C.I.%20Liu&amp;author=Y.C.%20Chan&amp;author=W.Y.%20Chen&amp;author=R.C.%20Ruaan&amp;volume=266&amp;publication_year=2005&amp;pages=175-180&amp;doi=10.1016/j.colsurfa.2005.06.023&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B10-biomolecules-15-00088">
<span class="label">10.</span><cite>Kachooeian M., Mousivand Z., Sharifikolouei E., Shirangi M., Firoozpour L., Raoufi M., Sharifzadeh M. Matrixyl Patch vs Matrixyl Cream: A Comparative In Vivo Investigation of Matrixyl (MTI) Effect on Wound Healing. ACS Omega. 2022;7:2469524704. doi: 10.1021/acsomega.2c02592.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1021/acsomega.2c02592" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC9301720/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/35874243/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=ACS%20Omega&amp;title=Matrixyl%20Patch%20vs%20Matrixyl%20Cream:%20A%20Comparative%20In%20Vivo%20Investigation%20of%20Matrixyl%20(MTI)%20Effect%20on%20Wound%20Healing&amp;author=M.%20Kachooeian&amp;author=Z.%20Mousivand&amp;author=E.%20Sharifikolouei&amp;author=M.%20Shirangi&amp;author=L.%20Firoozpour&amp;volume=7&amp;publication_year=2022&amp;pages=24695-24704&amp;pmid=35874243&amp;doi=10.1021/acsomega.2c02592&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B11-biomolecules-15-00088">
<span class="label">11.</span><cite>Gorouhi F., Maibach H.I. Topical Peptides and Proteins for Aging Skin BT. In: Farage M.A., Miller K.W., Maibach H.I., editors. Textbook of Aging Skin. Springer; Berlin/Heidelberg, Germany: 2010. pp. 10891117.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?title=Textbook%20of%20Aging%20Skin&amp;author=F.%20Gorouhi&amp;author=H.I.%20Maibach&amp;publication_year=2010&amp;isbn=978-3-540-89656-2&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B12-biomolecules-15-00088">
<span class="label">12.</span><cite>Schagen S.K. Topical Peptide Treatments with Effective Anti-Aging Results. Cosmetics. 2017;4:16. doi: 10.3390/cosmetics4020016.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3390/cosmetics4020016" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Cosmetics&amp;title=Topical%20Peptide%20Treatments%20with%20Effective%20Anti-Aging%20Results&amp;author=S.K.%20Schagen&amp;volume=4&amp;publication_year=2017&amp;pages=16&amp;doi=10.3390/cosmetics4020016&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B13-biomolecules-15-00088">
<span class="label">13.</span><cite>Ngoc L.T.N., Moon J.Y., Lee Y.C. Insights into Bioactive Peptides in Cosmetics. Cosmetics. 2023;10:111. doi: 10.3390/cosmetics10040111.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3390/cosmetics10040111" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Cosmetics&amp;title=Insights%20into%20Bioactive%20Peptides%20in%20Cosmetics&amp;author=L.T.N.%20Ngoc&amp;author=J.Y.%20Moon&amp;author=Y.C.%20Lee&amp;volume=10&amp;publication_year=2023&amp;pages=111&amp;doi=10.3390/cosmetics10040111&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B14-biomolecules-15-00088">
<span class="label">14.</span><cite>Tataringa G., Zbancioc A.M. Antirid Peptides in Cosmeceutical Formula. Rom. J. Pharm. Pract. 2021;14:111116. doi: 10.37897/RJPhP.2021.3.1.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.37897/RJPhP.2021.3.1" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Rom.%20J.%20Pharm.%20Pract.&amp;title=Antirid%20Peptides%20in%20Cosmeceutical%20Formula&amp;author=G.%20Tataringa&amp;author=A.M.%20Zbancioc&amp;volume=14&amp;publication_year=2021&amp;pages=111-116&amp;doi=10.37897/RJPhP.2021.3.1&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B15-biomolecules-15-00088">
<span class="label">15.</span><cite>Cauchard J.-H., Berton A., Godeau G., Hornebeck W., Bellon G. Activation of Latent Transforming Growth Factor Beta 1 and Inhibition of Matrix Metalloprotease Activity by a Thrombospondin-like Tripeptide Linked to Elaidic Acid. Biochem. Pharmacol. 2004;67:20132022. doi: 10.1016/j.bcp.2004.01.028.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1016/j.bcp.2004.01.028" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/15135298/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Biochem.%20Pharmacol.&amp;title=Activation%20of%20Latent%20Transforming%20Growth%20Factor%20Beta%201%20and%20Inhibition%20of%20Matrix%20Metalloprotease%20Activity%20by%20a%20Thrombospondin-like%20Tripeptide%20Linked%20to%20Elaidic%20Acid&amp;author=J.-H.%20Cauchard&amp;author=A.%20Berton&amp;author=G.%20Godeau&amp;author=W.%20Hornebeck&amp;author=G.%20Bellon&amp;volume=67&amp;publication_year=2004&amp;pages=2013-2022&amp;pmid=15135298&amp;doi=10.1016/j.bcp.2004.01.028&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B16-biomolecules-15-00088">
<span class="label">16.</span><cite>Sklirou A.D., Ralli M., Dominguez M., Papassideri I., Skaltsounis A.L., Trougakos I.P. Hexapeptide-11 Is a Novel Modulator of the Proteostasis Network in Human Diploid Fibroblasts. Redox Biol. 2015;5:205215. doi: 10.1016/j.redox.2015.04.010.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1016/j.redox.2015.04.010" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC4434199/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/25974626/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Redox%20Biol.&amp;title=Hexapeptide-11%20Is%20a%20Novel%20Modulator%20of%20the%20Proteostasis%20Network%20in%20Human%20Diploid%20Fibroblasts&amp;author=A.D.%20Sklirou&amp;author=M.%20Ralli&amp;author=M.%20Dominguez&amp;author=I.%20Papassideri&amp;author=A.L.%20Skaltsounis&amp;volume=5&amp;publication_year=2015&amp;pages=205-215&amp;pmid=25974626&amp;doi=10.1016/j.redox.2015.04.010&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B17-biomolecules-15-00088">
<span class="label">17.</span><cite>Shariati Pour S.R., Oddis S., Barbalinardo M., Ravarino P., Cavallini M., Fiori J., Giuri D., Tomasini C. Delivery of Active Peptides by Self-Healing, Biocompatible and Supramolecular Hydrogels. Molecules. 2023;28:2528. doi: 10.3390/molecules28062528.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3390/molecules28062528" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC10057174/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/36985499/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Molecules&amp;title=Delivery%20of%20Active%20Peptides%20by%20Self-Healing,%20Biocompatible%20and%20Supramolecular%20Hydrogels&amp;author=S.R.%20Shariati%20Pour&amp;author=S.%20Oddis&amp;author=M.%20Barbalinardo&amp;author=P.%20Ravarino&amp;author=M.%20Cavallini&amp;volume=28&amp;publication_year=2023&amp;pages=2528&amp;pmid=36985499&amp;doi=10.3390/molecules28062528&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B18-biomolecules-15-00088">
<span class="label">18.</span><cite>Resende D.I.S.P., Ferreira M.S., Sousa-Lobo J.M., Sousa E., Almeida I.F. Usage of Synthetic Peptides in Cosmetics for Sensitive Skin. Pharmaceuticals. 2021;14:702. doi: 10.3390/ph14080702.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3390/ph14080702" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC8400021/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/34451799/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Pharmaceuticals&amp;title=Usage%20of%20Synthetic%20Peptides%20in%20Cosmetics%20for%20Sensitive%20Skin&amp;author=D.I.S.P.%20Resende&amp;author=M.S.%20Ferreira&amp;author=J.M.%20Sousa-Lobo&amp;author=E.%20Sousa&amp;author=I.F.%20Almeida&amp;volume=14&amp;publication_year=2021&amp;pages=702&amp;pmid=34451799&amp;doi=10.3390/ph14080702&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B19-biomolecules-15-00088">
<span class="label">19.</span><cite>Crous C., Pretorius J., Petzer A. Overview of Popular Cosmeceuticals in Dermatology. Ski. Health Dis. 2024;4:e340. doi: 10.1002/ski2.340.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1002/ski2.340" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC10988741/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/38577050/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Ski.%20Health%20Dis.&amp;title=Overview%20of%20Popular%20Cosmeceuticals%20in%20Dermatology&amp;author=C.%20Crous&amp;author=J.%20Pretorius&amp;author=A.%20Petzer&amp;volume=4&amp;publication_year=2024&amp;pages=e340&amp;pmid=38577050&amp;doi=10.1002/ski2.340&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B20-biomolecules-15-00088">
<span class="label">20.</span><cite>Farwick M., Maczkiewitz U., Lersch P., Summers B., Rawlings A.V. Facial Skin-Lightening Benefits of the Tetrapeptide Pro-Lys-Glu-Lys on Subjects with Skin Types V-VI Living in South Africa. J. Cosmet. Dermatol. 2011;10:217223. doi: 10.1111/j.1473-2165.2011.00569.x.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1111/j.1473-2165.2011.00569.x" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/21896134/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=J.%20Cosmet.%20Dermatol.&amp;title=Facial%20Skin-Lightening%20Benefits%20of%20the%20Tetrapeptide%20Pro-Lys-Glu-Lys%20on%20Subjects%20with%20Skin%20Types%20V-VI%20Living%20in%20South%20Africa&amp;author=M.%20Farwick&amp;author=U.%20Maczkiewitz&amp;author=P.%20Lersch&amp;author=B.%20Summers&amp;author=A.V.%20Rawlings&amp;volume=10&amp;publication_year=2011&amp;pages=217-223&amp;pmid=21896134&amp;doi=10.1111/j.1473-2165.2011.00569.x&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B21-biomolecules-15-00088">
<span class="label">21.</span><cite>Farwick M., Grether-Beck S., Marini A., Maczkiewitz U., Lange J., Köhler T., Lersch P., Falla T., Felsner I., Brenden H., et al. Bioactive Tetrapeptide GEKG Boosts Extracellular Matrix Formation: In Vitro and in Vivo Molecular and Clinical Proof. Exp. Dermatol. 2011;20:602604. doi: 10.1111/j.1600-0625.2011.01307.x.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1111/j.1600-0625.2011.01307.x" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/21692860/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Exp.%20Dermatol.&amp;title=Bioactive%20Tetrapeptide%20GEKG%20Boosts%20Extracellular%20Matrix%20Formation:%20In%20Vitro%20and%20in%20Vivo%20Molecular%20and%20Clinical%20Proof&amp;author=M.%20Farwick&amp;author=S.%20Grether-Beck&amp;author=A.%20Marini&amp;author=U.%20Maczkiewitz&amp;author=J.%20Lange&amp;volume=20&amp;publication_year=2011&amp;pages=602-604&amp;pmid=21692860&amp;doi=10.1111/j.1600-0625.2011.01307.x&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B22-biomolecules-15-00088">
<span class="label">22.</span><cite>Wong P.R.V., Malgapo D.M.H., Sparavigna A., Lao M.P., Beilin G. The Clinical Evidence-Based Paradigm of Topical Anti-Aging Skincare Formulations Enriched with Bio-Active Peptide SA1-III (KP1) as Collagen Modulator: From Bench to Bedside. Clin. Cosmet. Investig. Dermatol. 2022;15:26932703. doi: 10.2147/CCID.S374295.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.2147/CCID.S374295" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC9760069/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/36540724/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Clin.%20Cosmet.%20Investig.%20Dermatol.&amp;title=The%20Clinical%20Evidence-Based%20Paradigm%20of%20Topical%20Anti-Aging%20Skincare%20Formulations%20Enriched%20with%20Bio-Active%20Peptide%20SA1-III%20(KP1)%20as%20Collagen%20Modulator:%20From%20Bench%20to%20Bedside&amp;author=P.R.V.%20Wong&amp;author=D.M.H.%20Malgapo&amp;author=A.%20Sparavigna&amp;author=M.P.%20Lao&amp;author=G.%20Beilin&amp;volume=15&amp;publication_year=2022&amp;pages=2693-2703&amp;pmid=36540724&amp;doi=10.2147/CCID.S374295&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B23-biomolecules-15-00088">
<span class="label">23.</span><cite>Negahdaripour M., Owji H., Eslami M., Zamani M., Vakili B., Sabetian S., Nezafat N., Ghasemi Y. Selected Application of Peptide Molecules as Pharmaceutical Agents and in Cosmeceuticals. Expert Opin. Biol. Ther. 2019;19:12751287. doi: 10.1080/14712598.2019.1652592.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1080/14712598.2019.1652592" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/31382850/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Expert%20Opin.%20Biol.%20Ther.&amp;title=Selected%20Application%20of%20Peptide%20Molecules%20as%20Pharmaceutical%20Agents%20and%20in%20Cosmeceuticals&amp;author=M.%20Negahdaripour&amp;author=H.%20Owji&amp;author=M.%20Eslami&amp;author=M.%20Zamani&amp;author=B.%20Vakili&amp;volume=19&amp;publication_year=2019&amp;pages=1275-1287&amp;pmid=31382850&amp;doi=10.1080/14712598.2019.1652592&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B24-biomolecules-15-00088">
<span class="label">24.</span><cite>Raikou V., Kalogria E., Varvaresou A., Tsirivas E., Panderi I. Quantitation of Acetyl Hexapeptide-8 in Cosmetics by Hydrophilic Interaction Liquid Chromatography Coupled to Photo Diode Array Detection. Separations. 2021;8:125. doi: 10.3390/separations8080125.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3390/separations8080125" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Separations&amp;title=Quantitation%20of%20Acetyl%20Hexapeptide-8%20in%20Cosmetics%20by%20Hydrophilic%20Interaction%20Liquid%20Chromatography%20Coupled%20to%20Photo%20Diode%20Array%20Detection&amp;author=V.%20Raikou&amp;author=E.%20Kalogria&amp;author=A.%20Varvaresou&amp;author=E.%20Tsirivas&amp;author=I.%20Panderi&amp;volume=8&amp;publication_year=2021&amp;pages=125&amp;doi=10.3390/separations8080125&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B25-biomolecules-15-00088">
<span class="label">25.</span><cite>Dragomirescu A.O., Andoni M., Ionescu D., Andrei F. The Efficiency and Safety of Leuphasyl-A Botox-like Peptide. Cosmetics. 2014;1:7581. doi: 10.3390/cosmetics1020075.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3390/cosmetics1020075" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Cosmetics&amp;title=The%20Efficiency%20and%20Safety%20of%20Leuphasyl-A%20Botox-like%20Peptide&amp;author=A.O.%20Dragomirescu&amp;author=M.%20Andoni&amp;author=D.%20Ionescu&amp;author=F.%20Andrei&amp;volume=1&amp;publication_year=2014&amp;pages=75-81&amp;doi=10.3390/cosmetics1020075&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B26-biomolecules-15-00088">
<span class="label">26.</span><cite>Baglamis S., Feyzioğlu-Demir E., Akgöl S. New Insight into Anti-Wrinkle Treatment: Using Nanoparticles as a Controlled Release System to Increase Acetyl Octapeptide-3 Efficiency. Polym. Bull. 2023;80:1265912681. doi: 10.1007/s00289-022-04663-8.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1007/s00289-022-04663-8" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Polym.%20Bull.&amp;title=New%20Insight%20into%20Anti-Wrinkle%20Treatment:%20Using%20Nanoparticles%20as%20a%20Controlled%20Release%20System%20to%20Increase%20Acetyl%20Octapeptide-3%20Efficiency&amp;author=S.%20Baglamis&amp;author=E.%20Feyzio%C4%9Flu-Demir&amp;author=S.%20Akg%C3%B6l&amp;volume=80&amp;publication_year=2023&amp;pages=12659-12681&amp;doi=10.1007/s00289-022-04663-8&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B27-biomolecules-15-00088">
<span class="label">27.</span><cite>Yuan M., Niu J., Li F., Ya H., Liu X., Li K., Fan Y., Zhang Q. Dipeptide-1 Modified Nanostructured Lipid Carrier-Based Hydrogel with Enhanced Skin Retention and Topical Efficacy of Curcumin. RSC Adv. 2023;13:2915229162. doi: 10.1039/D3RA04739C.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1039/D3RA04739C" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC10549242/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/37800130/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=RSC%20Adv.&amp;title=Dipeptide-1%20Modified%20Nanostructured%20Lipid%20Carrier-Based%20Hydrogel%20with%20Enhanced%20Skin%20Retention%20and%20Topical%20Efficacy%20of%20Curcumin&amp;author=M.%20Yuan&amp;author=J.%20Niu&amp;author=F.%20Li&amp;author=H.%20Ya&amp;author=X.%20Liu&amp;volume=13&amp;publication_year=2023&amp;pages=29152-29162&amp;pmid=37800130&amp;doi=10.1039/D3RA04739C&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B28-biomolecules-15-00088">
<span class="label">28.</span><cite>Nguyen T.T.M., Yi E.J., Jin X., Zheng Q., Park S.J., Yi G.S., Yang S.J., Yi T.H. Sustainable Dynamic Wrinkle Efficacy: Non-Invasive Peptides as the Future of Botox Alternatives. Cosmetics. 2024;11:118. doi: 10.3390/cosmetics11040118.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3390/cosmetics11040118" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Cosmetics&amp;title=Sustainable%20Dynamic%20Wrinkle%20Efficacy:%20Non-Invasive%20Peptides%20as%20the%20Future%20of%20Botox%20Alternatives&amp;author=T.T.M.%20Nguyen&amp;author=E.J.%20Yi&amp;author=X.%20Jin&amp;author=Q.%20Zheng&amp;author=S.J.%20Park&amp;volume=11&amp;publication_year=2024&amp;pages=118&amp;doi=10.3390/cosmetics11040118&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B29-biomolecules-15-00088">
<span class="label">29.</span><cite>Kim I.S., Yang W.S., Kim C.H. Beneficial Effects of Soybean-Derived Bioactive Peptides. Int. J. Mol. Sci. 2021;22:8570. doi: 10.3390/ijms22168570.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3390/ijms22168570" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC8395274/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/34445273/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Int.%20J.%20Mol.%20Sci.&amp;title=Beneficial%20Effects%20of%20Soybean-Derived%20Bioactive%20Peptides&amp;author=I.S.%20Kim&amp;author=W.S.%20Yang&amp;author=C.H.%20Kim&amp;volume=22&amp;publication_year=2021&amp;pages=8570&amp;pmid=34445273&amp;doi=10.3390/ijms22168570&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B30-biomolecules-15-00088">
<span class="label">30.</span><cite>Liu Y.Q., Strappe P., Shang W.T., Zhou Z.K. Functional Peptides Derived from Rice Bran Proteins. Crit. Rev. Food Sci. Nutr. 2019;59:349356. doi: 10.1080/10408398.2017.1374923.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1080/10408398.2017.1374923" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/28886263/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Crit.%20Rev.%20Food%20Sci.%20Nutr.&amp;title=Functional%20Peptides%20Derived%20from%20Rice%20Bran%20Proteins&amp;author=Y.Q.%20Liu&amp;author=P.%20Strappe&amp;author=W.T.%20Shang&amp;author=Z.K.%20Zhou&amp;volume=59&amp;publication_year=2019&amp;pages=349-356&amp;pmid=28886263&amp;doi=10.1080/10408398.2017.1374923&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B31-biomolecules-15-00088">
<span class="label">31.</span><cite>Pai V., Bhandari P., Shukla P. Topical Peptides as Cosmeceuticals. Indian J. Dermatol. Venereol. Leprol. 2017;83:918. doi: 10.4103/0378-6323.186500.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.4103/0378-6323.186500" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/27451932/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Indian%20J.%20Dermatol.%20Venereol.%20Leprol.&amp;title=Topical%20Peptides%20as%20Cosmeceuticals&amp;author=V.%20Pai&amp;author=P.%20Bhandari&amp;author=P.%20Shukla&amp;volume=83&amp;publication_year=2017&amp;pages=9-18&amp;pmid=27451932&amp;doi=10.4103/0378-6323.186500&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B32-biomolecules-15-00088">
<span class="label">32.</span><cite>Waszkielewicz A.M., Mirosław K. Peptides and Their Mechanisms of Action in the Skin. Appl. Sci. 2024;14:11495. doi: 10.3390/app142411495.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3390/app142411495" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Appl.%20Sci.&amp;title=Peptides%20and%20Their%20Mechanisms%20of%20Action%20in%20the%20Skin&amp;author=A.M.%20Waszkielewicz&amp;author=K.%20Miros%C5%82aw&amp;volume=14&amp;publication_year=2024&amp;pages=11495&amp;doi=10.3390/app142411495&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B33-biomolecules-15-00088">
<span class="label">33.</span><cite>Lupo M.P., Cole A.L. Cosmeceutical Peptides. Dermatol. Ther. 2007;20:343349. doi: 10.1111/j.1529-8019.2007.00148.x.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1111/j.1529-8019.2007.00148.x" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/18045359/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Dermatol.%20Ther.&amp;title=Cosmeceutical%20Peptides&amp;author=M.P.%20Lupo&amp;author=A.L.%20Cole&amp;volume=20&amp;publication_year=2007&amp;pages=343-349&amp;pmid=18045359&amp;doi=10.1111/j.1529-8019.2007.00148.x&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B34-biomolecules-15-00088">
<span class="label">34.</span><cite>Veiga E., Ferreira L., Correia M., Pires P.C., Hameed H., Araújo A.R.T.S., Cefali L.C., Mazzola P.G., Hamishehkar H., Veiga F., et al. Anti-Aging Peptides for Advanced Skincare: Focus on Nanodelivery Systems. J. Drug Deliv. Sci. Technol. 2023;89:105087. doi: 10.1016/j.jddst.2023.105087.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1016/j.jddst.2023.105087" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=J.%20Drug%20Deliv.%20Sci.%20Technol.&amp;title=Anti-Aging%20Peptides%20for%20Advanced%20Skincare:%20Focus%20on%20Nanodelivery%20Systems&amp;author=E.%20Veiga&amp;author=L.%20Ferreira&amp;author=M.%20Correia&amp;author=P.C.%20Pires&amp;author=H.%20Hameed&amp;volume=89&amp;publication_year=2023&amp;pages=105087&amp;doi=10.1016/j.jddst.2023.105087&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B35-biomolecules-15-00088">
<span class="label">35.</span><cite>Johnson W., Bergfeld W.F., Belsito D.V., Hill R.A., Klaassen C.D., Liebler D.C., Marks J.G., Shank R.C., Slaga T.J., Snyder P.W., et al. Safety Assessment of Tripeptide-1, Hexapeptide-12, Their Metal Salts and Fatty Acyl Derivatives, and Palmitoyl Tetrapeptide-7 as Used in Cosmetics. Int. J. Toxicol. 2018;37:90S102S. doi: 10.1177/1091581818807863.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1177/1091581818807863" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Int.%20J.%20Toxicol.&amp;title=Safety%20Assessment%20of%20Tripeptide-1,%20Hexapeptide-12,%20Their%20Metal%20Salts%20and%20Fatty%20Acyl%20Derivatives,%20and%20Palmitoyl%20Tetrapeptide-7%20as%20Used%20in%20Cosmetics&amp;author=W.%20Johnson&amp;author=W.F.%20Bergfeld&amp;author=D.V.%20Belsito&amp;author=R.A.%20Hill&amp;author=C.D.%20Klaassen&amp;volume=37&amp;publication_year=2018&amp;pages=90S-102S&amp;doi=10.1177/1091581818807863&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B36-biomolecules-15-00088">
<span class="label">36.</span><cite>Lupo M.P. Cosmeceutical Peptides. Dermatol. Surg. 2005;31:832836. doi: 10.1111/j.1524-4725.2005.31728.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1111/j.1524-4725.2005.31728" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/16029675/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Dermatol.%20Surg.&amp;title=Cosmeceutical%20Peptides&amp;author=M.P.%20Lupo&amp;volume=31&amp;publication_year=2005&amp;pages=832-836&amp;pmid=16029675&amp;doi=10.1111/j.1524-4725.2005.31728&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B37-biomolecules-15-00088">
<span class="label">37.</span><cite>Zhang L., Falla T.J. Cosmeceuticals and Peptides. Clin. Dermatol. 2009;27:485494. doi: 10.1016/j.clindermatol.2009.05.013.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1016/j.clindermatol.2009.05.013" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/19695481/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Clin.%20Dermatol.&amp;title=Cosmeceuticals%20and%20Peptides&amp;author=L.%20Zhang&amp;author=T.J.%20Falla&amp;volume=27&amp;publication_year=2009&amp;pages=485-494&amp;pmid=19695481&amp;doi=10.1016/j.clindermatol.2009.05.013&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B38-biomolecules-15-00088">
<span class="label">38.</span><cite>Maquart F.-X., Pickart L., Laurent M., Gillery P., Monboisse J.-C., Borel J.-P. Stimulation of Collagen Synthesis in Fibroblast Cultures by the Tripeptide-Copper Complex Glycyl-L-Histidyl-L-Lysine-Cu2+ FEBS Lett. 1988;238:343346. doi: 10.1016/0014-5793(88)80509-X.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1016/0014-5793(88)80509-X" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/3169264/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=FEBS%20Lett.&amp;title=Stimulation%20of%20Collagen%20Synthesis%20in%20Fibroblast%20Cultures%20by%20the%20Tripeptide-Copper%20Complex%20Glycyl-L-Histidyl-L-Lysine-Cu2+&amp;author=F.-X.%20Maquart&amp;author=L.%20Pickart&amp;author=M.%20Laurent&amp;author=P.%20Gillery&amp;author=J.-C.%20Monboisse&amp;volume=238&amp;publication_year=1988&amp;pages=343-346&amp;pmid=3169264&amp;doi=10.1016/0014-5793(88)80509-X&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B39-biomolecules-15-00088">
<span class="label">39.</span><cite>Siméon A., Wegrowski Y., Bontemps Y., Maquart F.-X. Expression of Glycosaminoglycans and Small Proteoglycans in Wounds: Modulation by the Tripeptide Copper Complex Glycyl-L-Histidyl-L-Lysine-Cu2+ J. Investig. Dermatol. 2000;115:962968. doi: 10.1046/j.1523-1747.2000.00166.x.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1046/j.1523-1747.2000.00166.x" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/11121126/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=J.%20Investig.%20Dermatol.&amp;title=Expression%20of%20Glycosaminoglycans%20and%20Small%20Proteoglycans%20in%20Wounds:%20Modulation%20by%20the%20Tripeptide%20Copper%20Complex%20Glycyl-L-Histidyl-L-Lysine-Cu2+&amp;author=A.%20Sim%C3%A9on&amp;author=Y.%20Wegrowski&amp;author=Y.%20Bontemps&amp;author=F.-X.%20Maquart&amp;volume=115&amp;publication_year=2000&amp;pages=962-968&amp;pmid=11121126&amp;doi=10.1046/j.1523-1747.2000.00166.x&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B40-biomolecules-15-00088">
<span class="label">40.</span><cite>Iaconisi G.N., Lunetti P., Gallo N., Cappello A.R., Fiermonte G., Dolce V., Capobianco L. Hyaluronic Acid: A Powerful Biomolecule with Wide-Ranging Applications—A Comprehensive Review. Int. J. Mol. Sci. 2023;24:10296. doi: 10.3390/ijms241210296.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3390/ijms241210296" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC10299688/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/37373443/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Int.%20J.%20Mol.%20Sci.&amp;title=Hyaluronic%20Acid:%20A%20Powerful%20Biomolecule%20with%20Wide-Ranging%20Applications%E2%80%94A%20Comprehensive%20Review&amp;author=G.N.%20Iaconisi&amp;author=P.%20Lunetti&amp;author=N.%20Gallo&amp;author=A.R.%20Cappello&amp;author=G.%20Fiermonte&amp;volume=24&amp;publication_year=2023&amp;pages=10296&amp;pmid=37373443&amp;doi=10.3390/ijms241210296&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B41-biomolecules-15-00088">
<span class="label">41.</span><cite>Hahn H.J., Jung H.J., Schrammek-Drusios M.C., Lee S.N., Kim J.H., Kwon S.B., An I.S., An S., Ahn K.J. Instrumental Evaluation of Anti-Aging Effects of Cosmetic Formulations Containing Palmitoyl Peptides, Silybum Marianum Seed Oil, Vitamin E and Other Functional Ingredients on Aged Human Skin. Exp. Ther. Med. 2016;12:11711176. doi: 10.3892/etm.2016.3447.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3892/etm.2016.3447" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC4950680/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/27446338/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Exp.%20Ther.%20Med.&amp;title=Instrumental%20Evaluation%20of%20Anti-Aging%20Effects%20of%20Cosmetic%20Formulations%20Containing%20Palmitoyl%20Peptides,%20Silybum%20Marianum%20Seed%20Oil,%20Vitamin%20E%20and%20Other%20Functional%20Ingredients%20on%20Aged%20Human%20Skin&amp;author=H.J.%20Hahn&amp;author=H.J.%20Jung&amp;author=M.C.%20Schrammek-Drusios&amp;author=S.N.%20Lee&amp;author=J.H.%20Kim&amp;volume=12&amp;publication_year=2016&amp;pages=1171-1176&amp;pmid=27446338&amp;doi=10.3892/etm.2016.3447&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B42-biomolecules-15-00088">
<span class="label">42.</span><cite>Zhang Y., Li Y., Quan Z., Xiao P., Duan J.A. New Insights into Antioxidant Peptides: An Overview of Efficient Screening, Evaluation Models, Molecular Mechanisms, and Applications. Antioxidants. 2024;13:203. doi: 10.3390/antiox13020203.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3390/antiox13020203" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC10886007/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/38397801/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Antioxidants&amp;title=New%20Insights%20into%20Antioxidant%20Peptides:%20An%20Overview%20of%20Efficient%20Screening,%20Evaluation%20Models,%20Molecular%20Mechanisms,%20and%20Applications&amp;author=Y.%20Zhang&amp;author=Y.%20Li&amp;author=Z.%20Quan&amp;author=P.%20Xiao&amp;author=J.A.%20Duan&amp;volume=13&amp;publication_year=2024&amp;pages=203&amp;pmid=38397801&amp;doi=10.3390/antiox13020203&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B43-biomolecules-15-00088">
<span class="label">43.</span><cite>Xu B., Dong Q., Yu C., Chen H., Zhao Y., Zhang B., Yu P., Chen M. Advances in Research on the Activity Evaluation, Mechanism and Structure-Activity Relationships of Natural Antioxidant Peptides. Antioxidants. 2024;13:479. doi: 10.3390/antiox13040479.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3390/antiox13040479" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC11047381/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/38671926/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Antioxidants&amp;title=Advances%20in%20Research%20on%20the%20Activity%20Evaluation,%20Mechanism%20and%20Structure-Activity%20Relationships%20of%20Natural%20Antioxidant%20Peptides&amp;author=B.%20Xu&amp;author=Q.%20Dong&amp;author=C.%20Yu&amp;author=H.%20Chen&amp;author=Y.%20Zhao&amp;volume=13&amp;publication_year=2024&amp;pages=479&amp;pmid=38671926&amp;doi=10.3390/antiox13040479&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B44-biomolecules-15-00088">
<span class="label">44.</span><cite>4Uno S., Kodama D., Yukawa H., Shidara H., Akamatsu M. Quantitative Analysis of the Relationship between Structure and Antioxidant Activity of Tripeptides. J. Pept. Sci. 2020;26:e3238. doi: 10.1002/psc.3238.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1002/psc.3238" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/31930566/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=J.%20Pept.%20Sci.&amp;title=Quantitative%20Analysis%20of%20the%20Relationship%20between%20Structure%20and%20Antioxidant%20Activity%20of%20Tripeptides&amp;author=S.%204Uno&amp;author=D.%20Kodama&amp;author=H.%20Yukawa&amp;author=H.%20Shidara&amp;author=M.%20Akamatsu&amp;volume=26&amp;publication_year=2020&amp;pages=e3238&amp;pmid=31930566&amp;doi=10.1002/psc.3238&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B45-biomolecules-15-00088">
<span class="label">45.</span><cite>Husein el Hadmed H., Castillo R.F. Cosmeceuticals: Peptides, Proteins, and Growth Factors. J. Cosmet. Dermatol. 2016;15:514519. doi: 10.1111/jocd.12229.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1111/jocd.12229" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/27142709/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=J.%20Cosmet.%20Dermatol.&amp;title=Cosmeceuticals:%20Peptides,%20Proteins,%20and%20Growth%20Factors&amp;author=H.%20Husein%20el%20Hadmed&amp;author=R.F.%20Castillo&amp;volume=15&amp;publication_year=2016&amp;pages=514-519&amp;pmid=27142709&amp;doi=10.1111/jocd.12229&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B46-biomolecules-15-00088">
<span class="label">46.</span><cite>Lima T.N., Moraes C.A.P. Bioactive Peptides: Applications and Relevance for Cosmeceuticals. Cosmetics. 2018;5:21. doi: 10.3390/cosmetics5010021.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3390/cosmetics5010021" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Cosmetics&amp;title=Bioactive%20Peptides:%20Applications%20and%20Relevance%20for%20Cosmeceuticals&amp;author=T.N.%20Lima&amp;author=C.A.P.%20Moraes&amp;volume=5&amp;publication_year=2018&amp;pages=21&amp;doi=10.3390/cosmetics5010021&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B47-biomolecules-15-00088">
<span class="label">47.</span><cite>Tałałaj U., Uscinowicz P., Bruzgo I., Surazynski A., Zareba I., Markowska A. The Effects of a Novel Series of KTTKS Analogues on Cytotoxicity and Proteolytic Activity. Molecules. 2019;24:3698. doi: 10.3390/molecules24203698.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3390/molecules24203698" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC6832239/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/31618846/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Molecules&amp;title=The%20Effects%20of%20a%20Novel%20Series%20of%20KTTKS%20Analogues%20on%20Cytotoxicity%20and%20Proteolytic%20Activity&amp;author=U.%20Ta%C5%82a%C5%82aj&amp;author=P.%20Uscinowicz&amp;author=I.%20Bruzgo&amp;author=A.%20Surazynski&amp;author=I.%20Zareba&amp;volume=24&amp;publication_year=2019&amp;pages=3698&amp;pmid=31618846&amp;doi=10.3390/molecules24203698&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B48-biomolecules-15-00088">
<span class="label">48.</span><cite>Suhendra N.N., Sumaetheiwit R. The Efficacy of 7% Palmitoyl Pentapeptide-4 Serum for the Periorbital Wrinkle Reduction; Proceedings of the RSU National Gratuate Research Conference; Rangsit, Thailand. 13 August 2020; pp. 28702884.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Proceedings%20of%20the%20RSU%20National%20Gratuate%20Research%20Conference&amp;title=The%20Efficacy%20of%207%%20Palmitoyl%20Pentapeptide-4%20Serum%20for%20the%20Periorbital%20Wrinkle%20Reduction&amp;author=N.N.%20Suhendra&amp;author=R.%20Sumaetheiwit&amp;pages=2870-2884&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B49-biomolecules-15-00088">
<span class="label">49.</span><cite>Robinson L.R., Fitzgerald N.C., Doughty D.G., Dawes N.C., Berge C.A., Bissett D.L. Topical Palmitoyl Pentapeptide Provides Improvement in Photoaged Human Facial Skin. Int. J. Cosmet. Sci. 2005;27:155160. doi: 10.1111/j.1467-2494.2005.00261.x.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1111/j.1467-2494.2005.00261.x" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/18492182/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Int.%20J.%20Cosmet.%20Sci.&amp;title=Topical%20Palmitoyl%20Pentapeptide%20Provides%20Improvement%20in%20Photoaged%20Human%20Facial%20Skin&amp;author=L.R.%20Robinson&amp;author=N.C.%20Fitzgerald&amp;author=D.G.%20Doughty&amp;author=N.C.%20Dawes&amp;author=C.A.%20Berge&amp;volume=27&amp;publication_year=2005&amp;pages=155-160&amp;pmid=18492182&amp;doi=10.1111/j.1467-2494.2005.00261.x&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B50-biomolecules-15-00088">
<span class="label">50.</span><cite>Raikou V., Varvaresou A., Panderi I., Papageorgiou E. The Efficacy Study of the Combination of Tripeptide-10-Citrulline and Acetyl Hexapeptide-3. A Prospective, Randomized Controlled Study. J. Cosmet. Dermatol. 2017;16:271278. doi: 10.1111/jocd.12314.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1111/jocd.12314" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/28150423/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=J.%20Cosmet.%20Dermatol.&amp;title=The%20Efficacy%20Study%20of%20the%20Combination%20of%20Tripeptide-10-Citrulline%20and%20Acetyl%20Hexapeptide-3.%20A%20Prospective,%20Randomized%20Controlled%20Study&amp;author=V.%20Raikou&amp;author=A.%20Varvaresou&amp;author=I.%20Panderi&amp;author=E.%20Papageorgiou&amp;volume=16&amp;publication_year=2017&amp;pages=271-278&amp;pmid=28150423&amp;doi=10.1111/jocd.12314&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B51-biomolecules-15-00088">
<span class="label">51.</span><cite>Puig A., Antón J.M.G., Mangues M. A New Decorin-like Tetrapeptide for Optimal Organization of Collagen Fibres. Int. J. Cosmet. Sci. 2008;30:97104. doi: 10.1111/j.1468-2494.2008.00429.x.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1111/j.1468-2494.2008.00429.x" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/18377618/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Int.%20J.%20Cosmet.%20Sci.&amp;title=A%20New%20Decorin-like%20Tetrapeptide%20for%20Optimal%20Organization%20of%20Collagen%20Fibres&amp;author=A.%20Puig&amp;author=J.M.G.%20Ant%C3%B3n&amp;author=M.%20Mangues&amp;volume=30&amp;publication_year=2008&amp;pages=97-104&amp;pmid=18377618&amp;doi=10.1111/j.1468-2494.2008.00429.x&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B52-biomolecules-15-00088">
<span class="label">52.</span><cite>Dymek M., Olechowska K., Hąc-Wydro K., Sikora E. Liposomes as Carriers of GHK-Cu Tripeptide for Cosmetic Application. Pharmaceutics. 2023;15:2485. doi: 10.3390/pharmaceutics15102485.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3390/pharmaceutics15102485" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC10610410/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/37896245/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Pharmaceutics&amp;title=Liposomes%20as%20Carriers%20of%20GHK-Cu%20Tripeptide%20for%20Cosmetic%20Application&amp;author=M.%20Dymek&amp;author=K.%20Olechowska&amp;author=K.%20H%C4%85c-Wydro&amp;author=E.%20Sikora&amp;volume=15&amp;publication_year=2023&amp;pages=2485&amp;pmid=37896245&amp;doi=10.3390/pharmaceutics15102485&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B53-biomolecules-15-00088">
<span class="label">53.</span><cite>He B., Wang F., Qu L. Role of PeptideCell Surface Interactions in Cosmetic Peptide Application. Front. Pharmacol. 2023;14:1267765. doi: 10.3389/fphar.2023.1267765.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3389/fphar.2023.1267765" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC10679740/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/38027006/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Front.%20Pharmacol.&amp;title=Role%20of%20Peptide%E2%80%93Cell%20Surface%20Interactions%20in%20Cosmetic%20Peptide%20Application&amp;author=B.%20He&amp;author=F.%20Wang&amp;author=L.%20Qu&amp;volume=14&amp;publication_year=2023&amp;pages=1267765&amp;pmid=38027006&amp;doi=10.3389/fphar.2023.1267765&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B54-biomolecules-15-00088">
<span class="label">54.</span><cite>Jiang F., Wu Y., Liu Z., Hong M., Huang Y. Synergy of GHK-Cu and Hyaluronic Acid on Collagen IV Upregulation via Fibroblast and Ex-Vivo Skin Tests. J. Cosmet. Dermatol. 2023;22:25982604. doi: 10.1111/jocd.15763.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1111/jocd.15763" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/37062921/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=J.%20Cosmet.%20Dermatol.&amp;title=Synergy%20of%20GHK-Cu%20and%20Hyaluronic%20Acid%20on%20Collagen%20IV%20Upregulation%20via%20Fibroblast%20and%20Ex-Vivo%20Skin%20Tests&amp;author=F.%20Jiang&amp;author=Y.%20Wu&amp;author=Z.%20Liu&amp;author=M.%20Hong&amp;author=Y.%20Huang&amp;volume=22&amp;publication_year=2023&amp;pages=2598-2604&amp;pmid=37062921&amp;doi=10.1111/jocd.15763&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B55-biomolecules-15-00088">
<span class="label">55.</span><cite>Pickart L., Margolina A. Regenerative and Protective Actions of the GHK-Cu Peptide in the Light of the New Gene Data. Int. J. Mol. Sci. 2018;19:1987. doi: 10.3390/ijms19071987.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3390/ijms19071987" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC6073405/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/29986520/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Int.%20J.%20Mol.%20Sci.&amp;title=Regenerative%20and%20Protective%20Actions%20of%20the%20GHK-Cu%20Peptide%20in%20the%20Light%20of%20the%20New%20Gene%20Data&amp;author=L.%20Pickart&amp;author=A.%20Margolina&amp;volume=19&amp;publication_year=2018&amp;pages=1987&amp;pmid=29986520&amp;doi=10.3390/ijms19071987&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B56-biomolecules-15-00088">
<span class="label">56.</span><cite>Badenhorst T., Svirskis D., Merrilees M. Effects of GHK-Cu on MMP and TIMP Expression, Collagen and Elastin Production, and Facial Wrinkle Parameters. J. Aging Sci. 2016;4:1000166. doi: 10.4172/2329-8847.1000166.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.4172/2329-8847.1000166" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=J.%20Aging%20Sci.&amp;title=Effects%20of%20GHK-Cu%20on%20MMP%20and%20TIMP%20Expression,%20Collagen%20and%20Elastin%20Production,%20and%20Facial%20Wrinkle%20Parameters&amp;author=T.%20Badenhorst&amp;author=D.%20Svirskis&amp;author=M.%20Merrilees&amp;volume=4&amp;publication_year=2016&amp;pages=1000166&amp;doi=10.4172/2329-8847.1000166&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B57-biomolecules-15-00088">
<span class="label">57.</span><cite>Huang P.J., Huang Y.C., Su M.F., Yang T.Y., Huang J.R., Jiang C.P. In Vitro Observations on the Influence of Copper Peptide Aids for the LED Photoirradiation of Fibroblast Collagen Synthesis. Photomed. Laser Surg. 2007;25:183190. doi: 10.1089/pho.2007.2062.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1089/pho.2007.2062" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/17603859/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Photomed.%20Laser%20Surg.&amp;title=In%20Vitro%20Observations%20on%20the%20Influence%20of%20Copper%20Peptide%20Aids%20for%20the%20LED%20Photoirradiation%20of%20Fibroblast%20Collagen%20Synthesis&amp;author=P.J.%20Huang&amp;author=Y.C.%20Huang&amp;author=M.F.%20Su&amp;author=T.Y.%20Yang&amp;author=J.R.%20Huang&amp;volume=25&amp;publication_year=2007&amp;pages=183-190&amp;pmid=17603859&amp;doi=10.1089/pho.2007.2062&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B58-biomolecules-15-00088">
<span class="label">58.</span><cite>Naderi-Hachtroudi L., Peters T., Brenneisen P., Meewes C., Hommel C., Razi-Wolf Z., Schneider L.A., Schüller J., Wlaschek M., Scharffetter-Kochanek K. Induction of Manganese Superoxide Dismutase in Human Dermal Fibroblasts: A UV-BMediated Paracrine Mechanism With the Release of Epidermal Interleukin 1α, Interleukin 1β, and Tumor Necrosis Factor α. Arch. Dermatol. 2002;138:14731479. doi: 10.1001/archderm.138.11.1473.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1001/archderm.138.11.1473" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/12437453/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Arch.%20Dermatol.&amp;title=Induction%20of%20Manganese%20Superoxide%20Dismutase%20in%20Human%20Dermal%20Fibroblasts:%20A%20UV-B%E2%80%93Mediated%20Paracrine%20Mechanism%20With%20the%20Release%20of%20Epidermal%20Interleukin%201%CE%B1,%20Interleukin%201%CE%B2,%20and%20Tumor%20Necrosis%20Factor%20%CE%B1&amp;author=L.%20Naderi-Hachtroudi&amp;author=T.%20Peters&amp;author=P.%20Brenneisen&amp;author=C.%20Meewes&amp;author=C.%20Hommel&amp;volume=138&amp;publication_year=2002&amp;pages=1473-1479&amp;pmid=12437453&amp;doi=10.1001/archderm.138.11.1473&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B59-biomolecules-15-00088">
<span class="label">59.</span><cite>Hussain M., Goldberg D.J. Topical Manganese Peptide in the Treatment of Photodamaged Skin. J. Cosmet. Laser Ther. 2007;9:232236. doi: 10.1080/14764170701704668.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1080/14764170701704668" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/18236243/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=J.%20Cosmet.%20Laser%20Ther.&amp;title=Topical%20Manganese%20Peptide%20in%20the%20Treatment%20of%20Photodamaged%20Skin&amp;author=M.%20Hussain&amp;author=D.J.%20Goldberg&amp;volume=9&amp;publication_year=2007&amp;pages=232-236&amp;pmid=18236243&amp;doi=10.1080/14764170701704668&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B60-biomolecules-15-00088">
<span class="label">60.</span><cite>Errante F., Ledwoń P., Latajka R., Rovero P., Papini A.M. Cosmeceutical Peptides in the Framework of Sustainable Wellness Economy. Front. Chem. 2020;8:572923. doi: 10.3389/fchem.2020.572923.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3389/fchem.2020.572923" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC7662462/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/33195061/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Front.%20Chem.&amp;title=Cosmeceutical%20Peptides%20in%20the%20Framework%20of%20Sustainable%20Wellness%20Economy&amp;author=F.%20Errante&amp;author=P.%20Ledwo%C5%84&amp;author=R.%20Latajka&amp;author=P.%20Rovero&amp;author=A.M.%20Papini&amp;volume=8&amp;publication_year=2020&amp;pages=572923&amp;pmid=33195061&amp;doi=10.3389/fchem.2020.572923&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B61-biomolecules-15-00088">
<span class="label">61.</span><cite>Lim S.H., Sun Y., Madanagopal Thiruvallur T., Rosa V., Kang L. Enhanced Skin Permeation of Anti-Wrinkle Peptides via Molecular Modification. Sci. Rep. 2018;8:1596. doi: 10.1038/s41598-017-18454-z.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1038/s41598-017-18454-z" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC5785486/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/29371611/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Sci.%20Rep.&amp;title=Enhanced%20Skin%20Permeation%20of%20Anti-Wrinkle%20Peptides%20via%20Molecular%20Modification&amp;author=S.H.%20Lim&amp;author=Y.%20Sun&amp;author=T.%20Madanagopal%20Thiruvallur&amp;author=V.%20Rosa&amp;author=L.%20Kang&amp;volume=8&amp;publication_year=2018&amp;pages=1596&amp;pmid=29371611&amp;doi=10.1038/s41598-017-18454-z&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B62-biomolecules-15-00088">
<span class="label">62.</span><cite>Aruan R.R., Hutabarat H., Widodo A.A., Firdiyono M.T.C.C., Wirawanty C., Fransiska L. Double-Blind, Randomized Trial on the Effectiveness of Acetylhexapeptide-3 Cream and Palmitoyl Pentapeptide-4 Cream for Crows Feet. J. Clin. Aesthet. Dermatol. 2023;16:3743.</cite> [<a class="usa-link" href="/articles/PMC10005804/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/36909866/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=J.%20Clin.%20Aesthet.%20Dermatol.&amp;title=Double-Blind,%20Randomized%20Trial%20on%20the%20Effectiveness%20of%20Acetylhexapeptide-3%20Cream%20and%20Palmitoyl%20Pentapeptide-4%20Cream%20for%20Crow%E2%80%99s%20Feet&amp;author=R.R.%20Aruan&amp;author=H.%20Hutabarat&amp;author=A.A.%20Widodo&amp;author=M.T.C.C.%20Firdiyono&amp;author=C.%20Wirawanty&amp;volume=16&amp;publication_year=2023&amp;pages=37-43&amp;pmid=36909866&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B63-biomolecules-15-00088">
<span class="label">63.</span><cite>Henseler H. Investigating the Effects of Argireline in a Skin Serum Containing Hyaluronic Acids on Skin Surface Wrinkles Using the Visia ® Complexion Analysis Camera System for Objective Skin Analysis Untersuchung Der Effekte von Argireline in Einem Hautpflegeserum B. GMS Interdiscip. Plast. Reconstr. Surg. DGPW. 2023:12. doi: 10.3205/iprs000179.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3205/iprs000179" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC10665711/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/38024099/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=GMS%20Interdiscip.%20Plast.%20Reconstr.%20Surg.%20DGPW&amp;title=Investigating%20the%20Effects%20of%20Argireline%20in%20a%20Skin%20Serum%20Containing%20Hyaluronic%20Acids%20on%20Skin%20Surface%20Wrinkles%20Using%20the%20Visia%20%C2%AE%20Complexion%20Analysis%20Camera%20System%20for%20Objective%20Skin%20Analysis%20Untersuchung%20Der%20Effekte%20von%20Argireline%20in%20Einem%20Hautpflegeserum%20B&amp;author=H.%20Henseler&amp;publication_year=2023&amp;pages=12&amp;pmid=38024099&amp;doi=10.3205/iprs000179&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B64-biomolecules-15-00088">
<span class="label">64.</span><cite>Wang Y., Wang M., Xiao S., Pan P., Li P., Huo J. The Anti-Wrinkle Efficacy of Argireline, a Synthetic Hexapeptide, in Chinese Subjects: A Randomized, Placebo-Controlled Study. Am. J. Clin. Dermatol. 2013;14:147153. doi: 10.1007/s40257-013-0009-9.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1007/s40257-013-0009-9" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/23417317/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Am.%20J.%20Clin.%20Dermatol.&amp;title=The%20Anti-Wrinkle%20Efficacy%20of%20Argireline,%20a%20Synthetic%20Hexapeptide,%20in%20Chinese%20Subjects:%20A%20Randomized,%20Placebo-Controlled%20Study&amp;author=Y.%20Wang&amp;author=M.%20Wang&amp;author=S.%20Xiao&amp;author=P.%20Pan&amp;author=P.%20Li&amp;volume=14&amp;publication_year=2013&amp;pages=147-153&amp;pmid=23417317&amp;doi=10.1007/s40257-013-0009-9&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B65-biomolecules-15-00088">
<span class="label">65.</span><cite>Blanes-Mira C., Clemente J., Jodas G., Gil A., Fernández-Ballester G., Ponsati B., Gutierrez L., Pérez-Payá E., Ferrer-Montiel A. A Synthetic Hexapeptide (Argireline) with Antiwrinkle Activity. Int. J. Cosmet. Sci. 2002;24:303310. doi: 10.1046/j.1467-2494.2002.00153.x.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1046/j.1467-2494.2002.00153.x" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/18498523/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Int.%20J.%20Cosmet.%20Sci.&amp;title=A%20Synthetic%20Hexapeptide%20(Argireline)%20with%20Antiwrinkle%20Activity&amp;author=C.%20Blanes-Mira&amp;author=J.%20Clemente&amp;author=G.%20Jodas&amp;author=A.%20Gil&amp;author=G.%20Fern%C3%A1ndez-Ballester&amp;volume=24&amp;publication_year=2002&amp;pages=303-310&amp;pmid=18498523&amp;doi=10.1046/j.1467-2494.2002.00153.x&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B66-biomolecules-15-00088">
<span class="label">66.</span><cite>Park J., Jung H., Jang B., Song H.-K., Han I.-O., Oh E.-S. D-Tyrosine Adds an Anti-Melanogenic Effect to Cosmetic Peptides. Sci. Rep. 2020;10:262. doi: 10.1038/s41598-019-57159-3.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1038/s41598-019-57159-3" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC6959337/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/31937863/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Sci.%20Rep.&amp;title=D-Tyrosine%20Adds%20an%20Anti-Melanogenic%20Effect%20to%20Cosmetic%20Peptides&amp;author=J.%20Park&amp;author=H.%20Jung&amp;author=B.%20Jang&amp;author=H.-K.%20Song&amp;author=I.-O.%20Han&amp;volume=10&amp;publication_year=2020&amp;pages=262&amp;pmid=31937863&amp;doi=10.1038/s41598-019-57159-3&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B67-biomolecules-15-00088">
<span class="label">67.</span><cite>Griffiths T.W., Watson R.E.B., Langton A.K. Skin Ageing and Topical Rejuvenation Strategies. Br. J. Dermatol. 2023;189:I17I23. doi: 10.1093/bjd/ljad282.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1093/bjd/ljad282" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/37903073/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Br.%20J.%20Dermatol.&amp;title=Skin%20Ageing%20and%20Topical%20Rejuvenation%20Strategies&amp;author=T.W.%20Griffiths&amp;author=R.E.B.%20Watson&amp;author=A.K.%20Langton&amp;volume=189&amp;publication_year=2023&amp;pages=I17-I23&amp;pmid=37903073&amp;doi=10.1093/bjd/ljad282&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B68-biomolecules-15-00088">
<span class="label">68.</span><cite>Balaev A.N., Okhmanovich K.A., Osipov V.N. A Shortened, Protecting Group Free, Synthesis of the Anti-Wrinkle Venom Analogue Syn-Ake® Exploiting an Optimized Hofmann-Type Rearrangement. Tetrahedron Lett. 2014;55:57455747. doi: 10.1016/j.tetlet.2014.08.117.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1016/j.tetlet.2014.08.117" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Tetrahedron%20Lett.&amp;title=A%20Shortened,%20Protecting%20Group%20Free,%20Synthesis%20of%20the%20Anti-Wrinkle%20Venom%20Analogue%20Syn-Ake%C2%AE%20Exploiting%20an%20Optimized%20Hofmann-Type%20Rearrangement&amp;author=A.N.%20Balaev&amp;author=K.A.%20Okhmanovich&amp;author=V.N.%20Osipov&amp;volume=55&amp;publication_year=2014&amp;pages=5745-5747&amp;doi=10.1016/j.tetlet.2014.08.117&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B69-biomolecules-15-00088">
<span class="label">69.</span><cite>Campiche R., Pascucci F., Jiang L., Vergne T., Cherel M., Gougeon S., Préstat-Marquis E., François G., Laurent G., Gempeler M. Facial Expression Wrinkles and Their Relaxation by a Synthetic Peptide. Int. J. Pept. Res. Ther. 2021;27:10091017. doi: 10.1007/s10989-020-10146-z.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1007/s10989-020-10146-z" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Int.%20J.%20Pept.%20Res.%20Ther.&amp;title=Facial%20Expression%20Wrinkles%20and%20Their%20Relaxation%20by%20a%20Synthetic%20Peptide&amp;author=R.%20Campiche&amp;author=F.%20Pascucci&amp;author=L.%20Jiang&amp;author=T.%20Vergne&amp;author=M.%20Cherel&amp;volume=27&amp;publication_year=2021&amp;pages=1009-1017&amp;doi=10.1007/s10989-020-10146-z&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B70-biomolecules-15-00088">
<span class="label">70.</span><cite>Gorouhi F., Maibach H.I. Role of Topical Peptides in Preventing or Treating Aged Skin. Int. J. Cosmet. Sci. 2009;31:327345. doi: 10.1111/j.1468-2494.2009.00490.x.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1111/j.1468-2494.2009.00490.x" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/19570099/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Int.%20J.%20Cosmet.%20Sci.&amp;title=Role%20of%20Topical%20Peptides%20in%20Preventing%20or%20Treating%20Aged%20Skin&amp;author=F.%20Gorouhi&amp;author=H.I.%20Maibach&amp;volume=31&amp;publication_year=2009&amp;pages=327-345&amp;pmid=19570099&amp;doi=10.1111/j.1468-2494.2009.00490.x&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B71-biomolecules-15-00088">
<span class="label">71.</span><cite>Tokudome Y., Nakamura K., Kage M., Todo H., Sugibayashi K., Hashimoto F. Effects of Soybean Peptide and Collagen Peptide on Collagen Synthesis in Normal Human Dermal Fibroblasts. Int. J. Food Sci. Nutr. 2012;63:689695. doi: 10.3109/09637486.2011.652597.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3109/09637486.2011.652597" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/22264122/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Int.%20J.%20Food%20Sci.%20Nutr.&amp;title=Effects%20of%20Soybean%20Peptide%20and%20Collagen%20Peptide%20on%20Collagen%20Synthesis%20in%20Normal%20Human%20Dermal%20Fibroblasts&amp;author=Y.%20Tokudome&amp;author=K.%20Nakamura&amp;author=M.%20Kage&amp;author=H.%20Todo&amp;author=K.%20Sugibayashi&amp;volume=63&amp;publication_year=2012&amp;pages=689-695&amp;pmid=22264122&amp;doi=10.3109/09637486.2011.652597&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B72-biomolecules-15-00088">
<span class="label">72.</span><cite>Cellular Longevity O.M.A. Retracted: Protective Effects of Soy Oligopeptides in Ultraviolet B-Induced Acute Photodamage of Human Skin. Oxid. Med. Cell. Longev. 2020;2020:8265810. doi: 10.1155/2020/8265810.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1155/2020/8265810" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC7479471/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/32934762/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Oxid.%20Med.%20Cell.%20Longev.&amp;title=Retracted:%20Protective%20Effects%20of%20Soy%20Oligopeptides%20in%20Ultraviolet%20B-Induced%20Acute%20Photodamage%20of%20Human%20Skin&amp;author=O.M.A.%20Cellular%20Longevity&amp;volume=2020&amp;publication_year=2020&amp;pages=8265810&amp;pmid=32934762&amp;doi=10.1155/2020/8265810&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B73-biomolecules-15-00088">
<span class="label">73.</span><cite>Miguel G.A., Álvarez-López C. Extraction and Antioxidant Activity of Sericin, a Protein from Silk. Brazilian J. Food Technol. 2020;23:e2019058. doi: 10.1590/1981-6723.05819.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1590/1981-6723.05819" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Brazilian%20J.%20Food%20Technol.&amp;title=Extraction%20and%20Antioxidant%20Activity%20of%20Sericin,%20a%20Protein%20from%20Silk&amp;author=G.A.%20Miguel&amp;author=C.%20%C3%81lvarez-L%C3%B3pez&amp;volume=23&amp;publication_year=2020&amp;pages=e2019058&amp;doi=10.1590/1981-6723.05819&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B74-biomolecules-15-00088">
<span class="label">74.</span><cite>Mumtaz S., Ali S., Qureshi M.Z., Muhammad A., Manan A., Akbar Mughal T. Antioxidant and Anti-Aging Role of Silk Sericin in D-Galactose Induced Mice Model. Saudi J. Biol. Sci. 2023;30:103872. doi: 10.1016/j.sjbs.2023.103872.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1016/j.sjbs.2023.103872" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC10700402/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/38073659/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Saudi%20J.%20Biol.%20Sci.&amp;title=Antioxidant%20and%20Anti-Aging%20Role%20of%20Silk%20Sericin%20in%20D-Galactose%20Induced%20Mice%20Model&amp;author=S.%20Mumtaz&amp;author=S.%20Ali&amp;author=M.Z.%20Qureshi&amp;author=A.%20Muhammad&amp;author=A.%20Manan&amp;volume=30&amp;publication_year=2023&amp;pages=103872&amp;pmid=38073659&amp;doi=10.1016/j.sjbs.2023.103872&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B75-biomolecules-15-00088">
<span class="label">75.</span><cite>Zhang R., Wei Y., Zhang J., Cai M., Lu L., Fang L., Qin X., Gu R. Protection Effects of Rice Protein Hydrolysate on UVB-Irradiated Photodamage in Hartley Guinea Pigs Skin and Human Skin Fibroblasts. J. Funct. Foods. 2021;82:104504. doi: 10.1016/j.jff.2021.104504.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1016/j.jff.2021.104504" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=J.%20Funct.%20Foods&amp;title=Protection%20Effects%20of%20Rice%20Protein%20Hydrolysate%20on%20UVB-Irradiated%20Photodamage%20in%20Hartley%20Guinea%20Pigs%20Skin%20and%20Human%20Skin%20Fibroblasts&amp;author=R.%20Zhang&amp;author=Y.%20Wei&amp;author=J.%20Zhang&amp;author=M.%20Cai&amp;author=L.%20Lu&amp;volume=82&amp;publication_year=2021&amp;pages=104504&amp;doi=10.1016/j.jff.2021.104504&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B76-biomolecules-15-00088">
<span class="label">76.</span><cite>Zhang R., Wei Y., Li M., Cai M., Gu R., Ma Y., Chen L., Wang J. Melanogenesis Effects of Rice Protein Hydrolysate and Its Characteristic Peptides Leu-Leu-Lys, Leu-Pro-Lys, and PyroGlu-Lys on UVB-Induced Human Epidermal Melanocyte Cells. Food Funct. 2020;11:87578767. doi: 10.1039/D0FO01808B.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1039/D0FO01808B" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/32955075/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Food%20Funct.&amp;title=Melanogenesis%20Effects%20of%20Rice%20Protein%20Hydrolysate%20and%20Its%20Characteristic%20Peptides%20Leu-Leu-Lys,%20Leu-Pro-Lys,%20and%20PyroGlu-Lys%20on%20UVB-Induced%20Human%20Epidermal%20Melanocyte%20Cells&amp;author=R.%20Zhang&amp;author=Y.%20Wei&amp;author=M.%20Li&amp;author=M.%20Cai&amp;author=R.%20Gu&amp;volume=11&amp;publication_year=2020&amp;pages=8757-8767&amp;pmid=32955075&amp;doi=10.1039/D0FO01808B&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B77-biomolecules-15-00088">
<span class="label">77.</span><cite>Ferreira M.S., Almeida I.F., Magalhães M.C., Sousa-Lobo J.M. Trending Anti-Aging Peptides. Cosmetics. 2020;7:91. doi: 10.3390/cosmetics7040091.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3390/cosmetics7040091" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Cosmetics&amp;title=Trending%20Anti-Aging%20Peptides&amp;author=M.S.%20Ferreira&amp;author=I.F.%20Almeida&amp;author=M.C.%20Magalh%C3%A3es&amp;author=J.M.%20Sousa-Lobo&amp;volume=7&amp;publication_year=2020&amp;pages=91&amp;doi=10.3390/cosmetics7040091&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B78-biomolecules-15-00088">
<span class="label">78.</span><cite>Moy M., Diaz I., Lesniak E., Giancola G. Peptide-pro Complex Serum: Investigating Effects on Aged Skin. J. Cosmet. Dermatol. 2023;22:267274. doi: 10.1111/jocd.14992.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1111/jocd.14992" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC10084013/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/35426243/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=J.%20Cosmet.%20Dermatol.&amp;title=Peptide-pro%20Complex%20Serum:%20Investigating%20Effects%20on%20Aged%20Skin&amp;author=M.%20Moy&amp;author=I.%20Diaz&amp;author=E.%20Lesniak&amp;author=G.%20Giancola&amp;volume=22&amp;publication_year=2023&amp;pages=267-274&amp;pmid=35426243&amp;doi=10.1111/jocd.14992&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B79-biomolecules-15-00088">
<span class="label">79.</span><cite>Shete Y., Birade P. A Comprehensive Examination of Potential of Peptides and Their Role in Cosmeceuticals: Review Article. J. Pharm. Insights Res. 2024;2:070076.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=J.%20Pharm.%20Insights%20Res.&amp;title=A%20Comprehensive%20Examination%20of%20Potential%20of%20Peptides%20and%20Their%20Role%20in%20Cosmeceuticals:%20Review%20Article&amp;author=Y.%20Shete&amp;author=P.%20Birade&amp;volume=2&amp;publication_year=2024&amp;pages=070-076&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B80-biomolecules-15-00088">
<span class="label">80.</span><cite>Zhao X., Zhang X., Liu D. Collagen Peptides and the Related Synthetic Peptides: A Review on Improving Skin Health. J. Funct. Foods. 2021;86:104680. doi: 10.1016/j.jff.2021.104680.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1016/j.jff.2021.104680" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=J.%20Funct.%20Foods&amp;title=Collagen%20Peptides%20and%20the%20Related%20Synthetic%20Peptides:%20A%20Review%20on%20Improving%20Skin%20Health&amp;author=X.%20Zhao&amp;author=X.%20Zhang&amp;author=D.%20Liu&amp;volume=86&amp;publication_year=2021&amp;pages=104680&amp;doi=10.1016/j.jff.2021.104680&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B81-biomolecules-15-00088">
<span class="label">81.</span><cite>Kraeling M.E.K., Zhou W., Wang P., Ogunsola O.A. In Vitro Skin Penetration of Acetyl Hexapeptide-8 from a Cosmetic Formulation. Cutan. Ocul. Toxicol. 2015;34:4652. doi: 10.3109/15569527.2014.894521.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3109/15569527.2014.894521" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/24754410/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Cutan.%20Ocul.%20Toxicol.&amp;title=In%20Vitro%20Skin%20Penetration%20of%20Acetyl%20Hexapeptide-8%20from%20a%20Cosmetic%20Formulation&amp;author=M.E.K.%20Kraeling&amp;author=W.%20Zhou&amp;author=P.%20Wang&amp;author=O.A.%20Ogunsola&amp;volume=34&amp;publication_year=2015&amp;pages=46-52&amp;pmid=24754410&amp;doi=10.3109/15569527.2014.894521&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B82-biomolecules-15-00088">
<span class="label">82.</span><cite>Al Musaimi O., Lombardi L., Williams D.R., Albericio F. Strategies for Improving Peptide Stability and Delivery. Pharmaceuticals. 2022;15:1283. doi: 10.3390/ph15101283.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3390/ph15101283" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC9610364/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/36297395/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Pharmaceuticals&amp;title=Strategies%20for%20Improving%20Peptide%20Stability%20and%20Delivery&amp;author=O.%20Al%20Musaimi&amp;author=L.%20Lombardi&amp;author=D.R.%20Williams&amp;author=F.%20Albericio&amp;volume=15&amp;publication_year=2022&amp;pages=1283&amp;pmid=36297395&amp;doi=10.3390/ph15101283&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B83-biomolecules-15-00088">
<span class="label">83.</span><cite>Benson H.A.E., Namjoshi S. Proteins and Peptides: Strategies for Delivery to and across the Skin. J. Pharm. Sci. 2008;97:35913610. doi: 10.1002/jps.21277.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1002/jps.21277" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/18200531/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=J.%20Pharm.%20Sci.&amp;title=Proteins%20and%20Peptides:%20Strategies%20for%20Delivery%20to%20and%20across%20the%20Skin&amp;author=H.A.E.%20Benson&amp;author=S.%20Namjoshi&amp;volume=97&amp;publication_year=2008&amp;pages=3591-3610&amp;pmid=18200531&amp;doi=10.1002/jps.21277&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B84-biomolecules-15-00088">
<span class="label">84.</span><cite>Errante F., Menicatti M., Pallecchi M., Giovannelli L., Papini A.M., Rovero P., Bartolucci G. Susceptibility of Cosmeceutical Peptides to Proteases Activity: Development of Dermal Stability Test by LC-MS/MS Analysis. J. Pharm. Biomed. Anal. 2021;194:113775. doi: 10.1016/j.jpba.2020.113775.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1016/j.jpba.2020.113775" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/33281001/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=J.%20Pharm.%20Biomed.%20Anal.&amp;title=Susceptibility%20of%20Cosmeceutical%20Peptides%20to%20Proteases%20Activity:%20Development%20of%20Dermal%20Stability%20Test%20by%20LC-MS/MS%20Analysis&amp;author=F.%20Errante&amp;author=M.%20Menicatti&amp;author=M.%20Pallecchi&amp;author=L.%20Giovannelli&amp;author=A.M.%20Papini&amp;volume=194&amp;publication_year=2021&amp;pages=113775&amp;pmid=33281001&amp;doi=10.1016/j.jpba.2020.113775&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B85-biomolecules-15-00088">
<span class="label">85.</span><cite>Akbarian M., Khani A., Eghbalpour S., Uversky V.N. Bioactive Peptides: Synthesis, Sources, Applications, and Proposed Mechanisms of Action. Int. J. Mol. Sci. 2022;23:1445. doi: 10.3390/ijms23031445.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3390/ijms23031445" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC8836030/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/35163367/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Int.%20J.%20Mol.%20Sci.&amp;title=Bioactive%20Peptides:%20Synthesis,%20Sources,%20Applications,%20and%20Proposed%20Mechanisms%20of%20Action&amp;author=M.%20Akbarian&amp;author=A.%20Khani&amp;author=S.%20Eghbalpour&amp;author=V.N.%20Uversky&amp;volume=23&amp;publication_year=2022&amp;pages=1445&amp;pmid=35163367&amp;doi=10.3390/ijms23031445&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B86-biomolecules-15-00088">
<span class="label">86.</span><cite>Li F., Chen H., Chen D., Zhang B., Shi Q., He X., Zhao H., Wang F. Clinical Evidence of the Efficacy and Safety of a New Multi-Peptide Anti-Aging Topical Eye Serum. J. Cosmet. Dermatol. 2023;22:33403346. doi: 10.1111/jocd.15849.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1111/jocd.15849" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/37335808/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=J.%20Cosmet.%20Dermatol.&amp;title=Clinical%20Evidence%20of%20the%20Efficacy%20and%20Safety%20of%20a%20New%20Multi-Peptide%20Anti-Aging%20Topical%20Eye%20Serum&amp;author=F.%20Li&amp;author=H.%20Chen&amp;author=D.%20Chen&amp;author=B.%20Zhang&amp;author=Q.%20Shi&amp;volume=22&amp;publication_year=2023&amp;pages=3340-3346&amp;pmid=37335808&amp;doi=10.1111/jocd.15849&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B87-biomolecules-15-00088">
<span class="label">87.</span><cite>Ibrahim S.A., Li S.K. Efficiency of Fatty Acids as Chemical Penetration Enhancers: Mechanisms and Structure Enhancement Relationship. Pharm. Res. 2010;27:115125. doi: 10.1007/s11095-009-9985-0.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1007/s11095-009-9985-0" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC2898574/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/19911256/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Pharm.%20Res.&amp;title=Efficiency%20of%20Fatty%20Acids%20as%20Chemical%20Penetration%20Enhancers:%20Mechanisms%20and%20Structure%20Enhancement%20Relationship&amp;author=S.A.%20Ibrahim&amp;author=S.K.%20Li&amp;volume=27&amp;publication_year=2010&amp;pages=115-125&amp;pmid=19911256&amp;doi=10.1007/s11095-009-9985-0&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B88-biomolecules-15-00088">
<span class="label">88.</span><cite>Caron J., Markusen J.R. Review Article On Permeation Enhancers: A Major Breakthrough In Drug Delivery Technology. Int. J. Pharm. Sci. Res. 2016;8:1001.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Int.%20J.%20Pharm.%20Sci.%20Res.&amp;title=Review%20Article%20On%20Permeation%20Enhancers:%20A%20Major%20Breakthrough%20In%20Drug%20Delivery%20Technology&amp;author=J.%20Caron&amp;author=J.R.%20Markusen&amp;volume=8&amp;publication_year=2016&amp;pages=1001&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B89-biomolecules-15-00088">
<span class="label">89.</span><cite>Hu X., He H. A Review of Cosmetic Skin Delivery. J. Cosmet. Dermatol. 2021;20:20202030. doi: 10.1111/jocd.14037.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1111/jocd.14037" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/33655674/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=J.%20Cosmet.%20Dermatol.&amp;title=A%20Review%20of%20Cosmetic%20Skin%20Delivery&amp;author=X.%20Hu&amp;author=H.%20He&amp;volume=20&amp;publication_year=2021&amp;pages=2020-2030&amp;pmid=33655674&amp;doi=10.1111/jocd.14037&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B90-biomolecules-15-00088">
<span class="label">90.</span><cite>Hmingthansanga V., Singh N., Banerjee S., Manickam S., Velayutham R., Natesan S. Improved Topical Drug Delivery: Role of Permeation Enhancers and Advanced Approaches. Pharmaceutics. 2022;14:2818. doi: 10.3390/pharmaceutics14122818.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3390/pharmaceutics14122818" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC9785322/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/36559311/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Pharmaceutics&amp;title=Improved%20Topical%20Drug%20Delivery:%20Role%20of%20Permeation%20Enhancers%20and%20Advanced%20Approaches&amp;author=V.%20Hmingthansanga&amp;author=N.%20Singh&amp;author=S.%20Banerjee&amp;author=S.%20Manickam&amp;author=R.%20Velayutham&amp;volume=14&amp;publication_year=2022&amp;pages=2818&amp;pmid=36559311&amp;doi=10.3390/pharmaceutics14122818&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B91-biomolecules-15-00088">
<span class="label">91.</span><cite>Ramadon D., McCrudden M.T.C., Courtenay A.J., Donnelly R.F. Enhancement Strategies for Transdermal Drug Delivery Systems: Current Trends and Applications. Drug Deliv. Transl. Res. 2022;12:758791. doi: 10.1007/s13346-021-00909-6.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1007/s13346-021-00909-6" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC7817074/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/33474709/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Drug%20Deliv.%20Transl.%20Res.&amp;title=Enhancement%20Strategies%20for%20Transdermal%20Drug%20Delivery%20Systems:%20Current%20Trends%20and%20Applications&amp;author=D.%20Ramadon&amp;author=M.T.C.%20McCrudden&amp;author=A.J.%20Courtenay&amp;author=R.F.%20Donnelly&amp;volume=12&amp;publication_year=2022&amp;pages=758-791&amp;pmid=33474709&amp;doi=10.1007/s13346-021-00909-6&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B92-biomolecules-15-00088">
<span class="label">92.</span><cite>Williams A.C., Barry B.W. Penetration Enhancers. Adv. Drug Deliv. Rev. 2012;64:128137. doi: 10.1016/j.addr.2012.09.032.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1016/j.addr.2012.09.032" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/15019749/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Adv.%20Drug%20Deliv.%20Rev.&amp;title=Penetration%20Enhancers&amp;author=A.C.%20Williams&amp;author=B.W.%20Barry&amp;volume=64&amp;publication_year=2012&amp;pages=128-137&amp;pmid=15019749&amp;doi=10.1016/j.addr.2012.09.032&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B93-biomolecules-15-00088">
<span class="label">93.</span><cite>Haque T., Talukder M.M.U. Chemical Enhancer: A Simplistic Way to Modulate Barrier Function of the Stratum Corneum. Adv. Pharm. Bull. 2018;8:169179. doi: 10.15171/apb.2018.021.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.15171/apb.2018.021" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC6046426/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/30023318/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Adv.%20Pharm.%20Bull.&amp;title=Chemical%20Enhancer:%20A%20Simplistic%20Way%20to%20Modulate%20Barrier%20Function%20of%20the%20Stratum%20Corneum&amp;author=T.%20Haque&amp;author=M.M.U.%20Talukder&amp;volume=8&amp;publication_year=2018&amp;pages=169-179&amp;pmid=30023318&amp;doi=10.15171/apb.2018.021&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B94-biomolecules-15-00088">
<span class="label">94.</span><cite>Foerster A., Neubert R.H.H. Dermal Peptide Delivery Using Enhancer Molecules and Colloidal Carrier Systems—Part V(#): Influence of Enhancers on the Permeation of PKEK through Snake Skin. Pharmazie. 2019;74:136141. doi: 10.1691/ph.2019.8105.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1691/ph.2019.8105" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/30961677/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Pharmazie&amp;title=Dermal%20Peptide%20Delivery%20Using%20Enhancer%20Molecules%20and%20Colloidal%20Carrier%20Systems%E2%80%94Part%20V(#):%20Influence%20of%20Enhancers%20on%20the%20Permeation%20of%20PKEK%20through%20Snake%20Skin&amp;author=A.%20Foerster&amp;author=R.H.H.%20Neubert&amp;volume=74&amp;publication_year=2019&amp;pages=136-141&amp;pmid=30961677&amp;doi=10.1691/ph.2019.8105&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B95-biomolecules-15-00088">
<span class="label">95.</span><cite>Lee K.-E., Jung M.-K., Eum J.-H., Jung S.-H., Ha K.-S., Park J.-H., Lee J.-S., Han S.-S., Choe M. Autoradiographic Verification of Transdermal Penetration of Oleic Acid-Conjugated Peptide Nanosomes. Appl. Microsc. 2010;40:185191.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Appl.%20Microsc.&amp;title=Autoradiographic%20Verification%20of%20Transdermal%20Penetration%20of%20Oleic%20Acid-Conjugated%20Peptide%20Nanosomes&amp;author=K.-E.%20Lee&amp;author=M.-K.%20Jung&amp;author=J.-H.%20Eum&amp;author=S.-H.%20Jung&amp;author=K.-S.%20Ha&amp;volume=40&amp;publication_year=2010&amp;pages=185-191&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B96-biomolecules-15-00088">
<span class="label">96.</span><cite>Hoppel M., Juric S., Reznicek G., Wirth M., Valenta C. Multiple W/O/W Emulsions as Dermal Peptide Delivery Systems. J. Drug Deliv. Sci. Technol. 2015;25:1622. doi: 10.1016/j.jddst.2014.11.001.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1016/j.jddst.2014.11.001" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=J.%20Drug%20Deliv.%20Sci.%20Technol.&amp;title=Multiple%20W/O/W%20Emulsions%20as%20Dermal%20Peptide%20Delivery%20Systems&amp;author=M.%20Hoppel&amp;author=S.%20Juric&amp;author=G.%20Reznicek&amp;author=M.%20Wirth&amp;author=C.%20Valenta&amp;volume=25&amp;publication_year=2015&amp;pages=16-22&amp;doi=10.1016/j.jddst.2014.11.001&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B97-biomolecules-15-00088">
<span class="label">97.</span><cite>Neubert R.H.H., Sommer E., Schölzel M., Tuchscherer B., Mrestani Y., Wohlrab J. Dermal Peptide Delivery Using Enhancer Moleculs and Colloidal Carrier Systems. Part II: Tetrapeptide PKEK. Eur. J. Pharm. Biopharm. 2018;124:2833. doi: 10.1016/j.ejpb.2017.12.004.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1016/j.ejpb.2017.12.004" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/29247690/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Eur.%20J.%20Pharm.%20Biopharm.&amp;title=Dermal%20Peptide%20Delivery%20Using%20Enhancer%20Moleculs%20and%20Colloidal%20Carrier%20Systems.%20Part%20II:%20Tetrapeptide%20PKEK&amp;author=R.H.H.%20Neubert&amp;author=E.%20Sommer&amp;author=M.%20Sch%C3%B6lzel&amp;author=B.%20Tuchscherer&amp;author=Y.%20Mrestani&amp;volume=124&amp;publication_year=2018&amp;pages=28-33&amp;pmid=29247690&amp;doi=10.1016/j.ejpb.2017.12.004&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B98-biomolecules-15-00088">
<span class="label">98.</span><cite>Fossa Shirata M.M., Maia Campos P.M.B.G. Sunscreens and Cosmetic Formulations Containing Ascorbyl Tetraisopalmitate and Rice Peptides for the Improvement of Skin Photoaging: A Double-Blind, Randomized Placebo-Controlled Clinical Study. Photochem. Photobiol. 2021;97:805815. doi: 10.1111/php.13390.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1111/php.13390" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/33529350/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Photochem.%20Photobiol.&amp;title=Sunscreens%20and%20Cosmetic%20Formulations%20Containing%20Ascorbyl%20Tetraisopalmitate%20and%20Rice%20Peptides%20for%20the%20Improvement%20of%20Skin%20Photoaging:%20A%20Double-Blind,%20Randomized%20Placebo-Controlled%20Clinical%20Study&amp;author=M.M.%20Fossa%20Shirata&amp;author=P.M.B.G.%20Maia%20Campos&amp;volume=97&amp;publication_year=2021&amp;pages=805-815&amp;pmid=33529350&amp;doi=10.1111/php.13390&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B99-biomolecules-15-00088">
<span class="label">99.</span><cite>Lee S.G., Kang S.M., Kang H. Wrinkle Reduction Using Tetrapeptide-68 Contained in an O/W Formulation: A Randomized Double-Blind Placebo-Controlled Study. Pharmaceutics. 2024;16:987. doi: 10.3390/pharmaceutics16080987.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3390/pharmaceutics16080987" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC11359174/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/39204332/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Pharmaceutics&amp;title=Wrinkle%20Reduction%20Using%20Tetrapeptide-68%20Contained%20in%20an%20O/W%20Formulation:%20A%20Randomized%20Double-Blind%20Placebo-Controlled%20Study&amp;author=S.G.%20Lee&amp;author=S.M.%20Kang&amp;author=H.%20Kang&amp;volume=16&amp;publication_year=2024&amp;pages=987&amp;pmid=39204332&amp;doi=10.3390/pharmaceutics16080987&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B100-biomolecules-15-00088">
<span class="label">100.</span><cite>Sanz M.T., Campos C., Milani M., Foyaca M., Lamy A., Kurdian K., Trullas C. Biorevitalizing Effect of a Novel Facial Serum Containing Apple Stem Cell Extract, pro-Collagen Lipopeptide, Creatine, and Urea on Skin Aging Signs. J. Cosmet. Dermatol. 2016;15:2430. doi: 10.1111/jocd.12173.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1111/jocd.12173" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/26424007/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=J.%20Cosmet.%20Dermatol.&amp;title=Biorevitalizing%20Effect%20of%20a%20Novel%20Facial%20Serum%20Containing%20Apple%20Stem%20Cell%20Extract,%20pro-Collagen%20Lipopeptide,%20Creatine,%20and%20Urea%20on%20Skin%20Aging%20Signs&amp;author=M.T.%20Sanz&amp;author=C.%20Campos&amp;author=M.%20Milani&amp;author=M.%20Foyaca&amp;author=A.%20Lamy&amp;volume=15&amp;publication_year=2016&amp;pages=24-30&amp;pmid=26424007&amp;doi=10.1111/jocd.12173&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B101-biomolecules-15-00088">
<span class="label">101.</span><cite>Chen J., Bian J., Hantash B.M., Albakr L., Hibbs D.E., Xiang X., Xie P., Wu C., Kang L. Enhanced Skin Retention and Permeation of a Novel Peptide via Structural Modification, Chemical Enhancement, and Microneedles. Int. J. Pharm. 2021;606:120868. doi: 10.1016/j.ijpharm.2021.120868.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1016/j.ijpharm.2021.120868" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/34242628/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Int.%20J.%20Pharm.&amp;title=Enhanced%20Skin%20Retention%20and%20Permeation%20of%20a%20Novel%20Peptide%20via%20Structural%20Modification,%20Chemical%20Enhancement,%20and%20Microneedles&amp;author=J.%20Chen&amp;author=J.%20Bian&amp;author=B.M.%20Hantash&amp;author=L.%20Albakr&amp;author=D.E.%20Hibbs&amp;volume=606&amp;publication_year=2021&amp;pages=120868&amp;pmid=34242628&amp;doi=10.1016/j.ijpharm.2021.120868&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B102-biomolecules-15-00088">
<span class="label">102.</span><cite>Mortazavi S.M., Kobarfard F., Manafi A., Maibach H.I., Moghimi H.R. Terpene Conjugation: A Novel Approach for Topical Peptide Delivery. J. Cosmet. Sci. 2021;72:547.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=J.%20Cosmet.%20Sci.&amp;title=Terpene%20Conjugation:%20A%20Novel%20Approach%20for%20Topical%20Peptide%20Delivery&amp;author=S.M.%20Mortazavi&amp;author=F.%20Kobarfard&amp;author=A.%20Manafi&amp;author=H.I.%20Maibach&amp;author=H.R.%20Moghimi&amp;volume=72&amp;publication_year=2021&amp;pages=547&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B103-biomolecules-15-00088">
<span class="label">103.</span><cite>Zhang Q., Zhang X., Qi Y., Li Y., Guo Y., Jiang H., Chen Y., Liu J. Interaction Mechanism and Compatibility Studies of Silk Protein Peptide (SPP) with the Common Surfactants SDS and DTAB. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024;322:124833. doi: 10.1016/j.saa.2024.124833.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1016/j.saa.2024.124833" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/39033608/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Spectrochim.%20Acta%20Part%20A%20Mol.%20Biomol.%20Spectrosc.&amp;title=Interaction%20Mechanism%20and%20Compatibility%20Studies%20of%20Silk%20Protein%20Peptide%20(SPP)%20with%20the%20Common%20Surfactants%20SDS%20and%20DTAB&amp;author=Q.%20Zhang&amp;author=X.%20Zhang&amp;author=Y.%20Qi&amp;author=Y.%20Li&amp;author=Y.%20Guo&amp;volume=322&amp;publication_year=2024&amp;pages=124833&amp;pmid=39033608&amp;doi=10.1016/j.saa.2024.124833&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B104-biomolecules-15-00088">
<span class="label">104.</span><cite>Pawłowska M., Marzec M., Jankowiak W., Nowak I. Retinol and Oligopeptide-Loaded Lipid Nanocarriers as Effective Raw Material in Anti-Acne and Anti-Aging Therapies. Life. 2024;14:1212. doi: 10.3390/life14101212.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3390/life14101212" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC11508827/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/39459512/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Life&amp;title=Retinol%20and%20Oligopeptide-Loaded%20Lipid%20Nanocarriers%20as%20Effective%20Raw%20Material%20in%20Anti-Acne%20and%20Anti-Aging%20Therapies&amp;author=M.%20Paw%C5%82owska&amp;author=M.%20Marzec&amp;author=W.%20Jankowiak&amp;author=I.%20Nowak&amp;volume=14&amp;publication_year=2024&amp;pages=1212&amp;pmid=39459512&amp;doi=10.3390/life14101212&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B105-biomolecules-15-00088">
<span class="label">105.</span><cite>Kis N., Kovács A., Budai-Szűcs M., Erős G., Csányi E., Berkó S. The Effect of Non-Invasive Dermal Electroporation on Skin Barrier Function and Skin Permeation in Combination with Different Dermal Formulations. J. Drug Deliv. Sci. Technol. 2022;69:103161. doi: 10.1016/j.jddst.2022.103161.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1016/j.jddst.2022.103161" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=J.%20Drug%20Deliv.%20Sci.%20Technol.&amp;title=The%20Effect%20of%20Non-Invasive%20Dermal%20Electroporation%20on%20Skin%20Barrier%20Function%20and%20Skin%20Permeation%20in%20Combination%20with%20Different%20Dermal%20Formulations&amp;author=N.%20Kis&amp;author=A.%20Kov%C3%A1cs&amp;author=M.%20Budai-Sz%C5%B1cs&amp;author=G.%20Er%C5%91s&amp;author=E.%20Cs%C3%A1nyi&amp;volume=69&amp;publication_year=2022&amp;pages=103161&amp;doi=10.1016/j.jddst.2022.103161&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B106-biomolecules-15-00088">
<span class="label">106.</span><cite>Gajula K., Gupta R., Rai B. Multiscale Modeling of Skin Electroporation. Langmuir. 2020;36:66516660. doi: 10.1021/acs.langmuir.0c00500.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1021/acs.langmuir.0c00500" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/32475118/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Langmuir&amp;title=Multiscale%20Modeling%20of%20Skin%20Electroporation&amp;author=K.%20Gajula&amp;author=R.%20Gupta&amp;author=B.%20Rai&amp;volume=36&amp;publication_year=2020&amp;pages=6651-6660&amp;pmid=32475118&amp;doi=10.1021/acs.langmuir.0c00500&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B107-biomolecules-15-00088">
<span class="label">107.</span><cite>Chen X., Zhu L., Li R., Pang L., Zhu S., Ma J., Du L., Jin Y. Electroporation-Enhanced Transdermal Drug Delivery: Effects of LogP, PKa, Solubility and Penetration Time. Eur. J. Pharm. Sci. 2020;151:105410. doi: 10.1016/j.ejps.2020.105410.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1016/j.ejps.2020.105410" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/32505795/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Eur.%20J.%20Pharm.%20Sci.&amp;title=Electroporation-Enhanced%20Transdermal%20Drug%20Delivery:%20Effects%20of%20LogP,%20PKa,%20Solubility%20and%20Penetration%20Time&amp;author=X.%20Chen&amp;author=L.%20Zhu&amp;author=R.%20Li&amp;author=L.%20Pang&amp;author=S.%20Zhu&amp;volume=151&amp;publication_year=2020&amp;pages=105410&amp;pmid=32505795&amp;doi=10.1016/j.ejps.2020.105410&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B108-biomolecules-15-00088">
<span class="label">108.</span><cite>Kougkolos G., Laudebat L., Dinculescu S., Simon J., Golzio M., Valdez-Nava Z., Flahaut E. Skin Electroporation for Transdermal Drug Delivery: Electrical Measurements, Numerical Model and Molecule Delivery. J. Control. Release. 2024;367:235247. doi: 10.1016/j.jconrel.2024.01.036.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1016/j.jconrel.2024.01.036" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/38244842/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=J.%20Control.%20Release&amp;title=Skin%20Electroporation%20for%20Transdermal%20Drug%20Delivery:%20Electrical%20Measurements,%20Numerical%20Model%20and%20Molecule%20Delivery&amp;author=G.%20Kougkolos&amp;author=L.%20Laudebat&amp;author=S.%20Dinculescu&amp;author=J.%20Simon&amp;author=M.%20Golzio&amp;volume=367&amp;publication_year=2024&amp;pages=235-247&amp;pmid=38244842&amp;doi=10.1016/j.jconrel.2024.01.036&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B109-biomolecules-15-00088">
<span class="label">109.</span><cite>Rajput A., Patil A., Kandhare P., Pawar A. Application of Microneedle Arrays in Cosmetics: Promises, Advances, and Challenges. Med. Nov. Technol. Devices. 2024;24:100325. doi: 10.1016/j.medntd.2024.100325.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1016/j.medntd.2024.100325" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Med.%20Nov.%20Technol.%20Devices&amp;title=Application%20of%20Microneedle%20Arrays%20in%20Cosmetics:%20Promises,%20Advances,%20and%20Challenges&amp;author=A.%20Rajput&amp;author=A.%20Patil&amp;author=P.%20Kandhare&amp;author=A.%20Pawar&amp;volume=24&amp;publication_year=2024&amp;pages=100325&amp;doi=10.1016/j.medntd.2024.100325&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B110-biomolecules-15-00088">
<span class="label">110.</span><cite>Shah B., Surti N., Misra A. 12—Other Routes of Protein and Peptide Delivery: Transdermal, Topical, Uterine, and Rectal. In: Misra A., editor. Challenges in Delivery of Therapeutic Genomics and Proteomics. Elsevier; London, UK: 2011. pp. 623671.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?title=Challenges%20in%20Delivery%20of%20Therapeutic%20Genomics%20and%20Proteomics&amp;author=B.%20Shah&amp;author=N.%20Surti&amp;author=A.%20Misra&amp;publication_year=2011&amp;isbn=978-0-12-384964-9&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B111-biomolecules-15-00088">
<span class="label">111.</span><cite>Kim K.T., Lee J., Kim M.H., Park J.H., Lee J.Y., Song J.H., Jung M., Jang M.H., Cho H.J., Yoon I.S., et al. Novel Reverse Electrodialysis-Driven Iontophoretic System for Topical and Transdermal Delivery of Poorly Permeable Therapeutic Agents. Drug Deliv. 2017;24:12041215. doi: 10.1080/10717544.2017.1367975.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1080/10717544.2017.1367975" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC8241169/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/28844174/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Drug%20Deliv.&amp;title=Novel%20Reverse%20Electrodialysis-Driven%20Iontophoretic%20System%20for%20Topical%20and%20Transdermal%20Delivery%20of%20Poorly%20Permeable%20Therapeutic%20Agents&amp;author=K.T.%20Kim&amp;author=J.%20Lee&amp;author=M.H.%20Kim&amp;author=J.H.%20Park&amp;author=J.Y.%20Lee&amp;volume=24&amp;publication_year=2017&amp;pages=1204-1215&amp;pmid=28844174&amp;doi=10.1080/10717544.2017.1367975&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B112-biomolecules-15-00088">
<span class="label">112.</span><cite>Bakshi P., Vora D., Hemmady K., Banga A.K. Iontophoretic Skin Delivery Systems: Success and Failures. Int. J. Pharm. 2020;586:119584. doi: 10.1016/j.ijpharm.2020.119584.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1016/j.ijpharm.2020.119584" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/32603836/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Int.%20J.%20Pharm.&amp;title=Iontophoretic%20Skin%20Delivery%20Systems:%20Success%20and%20Failures&amp;author=P.%20Bakshi&amp;author=D.%20Vora&amp;author=K.%20Hemmady&amp;author=A.K.%20Banga&amp;volume=586&amp;publication_year=2020&amp;pages=119584&amp;pmid=32603836&amp;doi=10.1016/j.ijpharm.2020.119584&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B113-biomolecules-15-00088">
<span class="label">113.</span><cite>Wang Y., Zeng L., Song W., Liu J. Influencing Factors and Drug Application of Iontophoresis in Transdermal Drug Delivery: An Overview of Recent Progress. Drug Deliv. Transl. Res. 2022;12:1526. doi: 10.1007/s13346-021-00898-6.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1007/s13346-021-00898-6" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/33486687/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Drug%20Deliv.%20Transl.%20Res.&amp;title=Influencing%20Factors%20and%20Drug%20Application%20of%20Iontophoresis%20in%20Transdermal%20Drug%20Delivery:%20An%20Overview%20of%20Recent%20Progress&amp;author=Y.%20Wang&amp;author=L.%20Zeng&amp;author=W.%20Song&amp;author=J.%20Liu&amp;volume=12&amp;publication_year=2022&amp;pages=15-26&amp;pmid=33486687&amp;doi=10.1007/s13346-021-00898-6&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B114-biomolecules-15-00088">
<span class="label">114.</span><cite>Hasan M., Khatun A., Kogure K. Iontophoresis of Biological Macromolecular Drugs. Pharmaceutics. 2022;14:525. doi: 10.3390/pharmaceutics14030525.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3390/pharmaceutics14030525" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC8953920/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/35335900/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Pharmaceutics&amp;title=Iontophoresis%20of%20Biological%20Macromolecular%20Drugs&amp;author=M.%20Hasan&amp;author=A.%20Khatun&amp;author=K.%20Kogure&amp;volume=14&amp;publication_year=2022&amp;pages=525&amp;pmid=35335900&amp;doi=10.3390/pharmaceutics14030525&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B115-biomolecules-15-00088">
<span class="label">115.</span><cite>Liatsopoulou A., Varvaresou A., Mellou F., Protopapa E. Iontophoresis in Dermal Delivery: A Review of Applications in Dermato-Cosmetic and Aesthetic Sciences. Int. J. Cosmet. Sci. 2023;45:117132. doi: 10.1111/ics.12824.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1111/ics.12824" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/36326063/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Int.%20J.%20Cosmet.%20Sci.&amp;title=Iontophoresis%20in%20Dermal%20Delivery:%20A%20Review%20of%20Applications%20in%20Dermato-Cosmetic%20and%20Aesthetic%20Sciences&amp;author=A.%20Liatsopoulou&amp;author=A.%20Varvaresou&amp;author=F.%20Mellou&amp;author=E.%20Protopapa&amp;volume=45&amp;publication_year=2023&amp;pages=117-132&amp;pmid=36326063&amp;doi=10.1111/ics.12824&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B116-biomolecules-15-00088">
<span class="label">116.</span><cite>Krishnan G., Roberts M.S., Grice J., Anissimov Y.G., Moghimi H.R., Benson H.A.E. Iontophoretic Skin Permeation of Peptides: An Investigation into the Influence of Molecular Properties, Iontophoretic Conditions and Formulation Parameters. Drug Deliv. Transl. Res. 2014;4:222232. doi: 10.1007/s13346-013-0181-8.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1007/s13346-013-0181-8" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/25786877/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Drug%20Deliv.%20Transl.%20Res.&amp;title=Iontophoretic%20Skin%20Permeation%20of%20Peptides:%20An%20Investigation%20into%20the%20Influence%20of%20Molecular%20Properties,%20Iontophoretic%20Conditions%20and%20Formulation%20Parameters&amp;author=G.%20Krishnan&amp;author=M.S.%20Roberts&amp;author=J.%20Grice&amp;author=Y.G.%20Anissimov&amp;author=H.R.%20Moghimi&amp;volume=4&amp;publication_year=2014&amp;pages=222-232&amp;pmid=25786877&amp;doi=10.1007/s13346-013-0181-8&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B117-biomolecules-15-00088">
<span class="label">117.</span><cite>Iapichino M., Maibach H., Stoeber B. Quantification Methods Comparing in Vitro and in Vivo Percutaneous Permeation by Microneedles and Passive Diffusion. Int. J. Pharm. 2023;638:122885. doi: 10.1016/j.ijpharm.2023.122885.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1016/j.ijpharm.2023.122885" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/37015294/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Int.%20J.%20Pharm.&amp;title=Quantification%20Methods%20Comparing%20in%20Vitro%20and%20in%20Vivo%20Percutaneous%20Permeation%20by%20Microneedles%20and%20Passive%20Diffusion&amp;author=M.%20Iapichino&amp;author=H.%20Maibach&amp;author=B.%20Stoeber&amp;volume=638&amp;publication_year=2023&amp;pages=122885&amp;pmid=37015294&amp;doi=10.1016/j.ijpharm.2023.122885&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B118-biomolecules-15-00088">
<span class="label">118.</span><cite>Nguyen T.T., Nguyen T.T.D., Tran N.M.A., Vo G. Van Advances of Microneedles in Hormone Delivery. Biomed. Pharmacother. 2022;145:112393. doi: 10.1016/j.biopha.2021.112393.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1016/j.biopha.2021.112393" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/34773762/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Biomed.%20Pharmacother.&amp;title=Van%20Advances%20of%20Microneedles%20in%20Hormone%20Delivery&amp;author=T.T.%20Nguyen&amp;author=T.T.D.%20Nguyen&amp;author=N.M.A.%20Tran&amp;author=G.%20Vo&amp;volume=145&amp;publication_year=2022&amp;pages=112393&amp;pmid=34773762&amp;doi=10.1016/j.biopha.2021.112393&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B119-biomolecules-15-00088">
<span class="label">119.</span><cite>Quinn H.L., Kearney M.C., Courtenay A.J., McCrudden M.T., Donnelly R.F. The Role of Microneedles for Drug and Vaccine Delivery. Expert Opin. Drug Deliv. 2014;11:17691780. doi: 10.1517/17425247.2014.938635.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1517/17425247.2014.938635" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/25020088/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Expert%20Opin.%20Drug%20Deliv.&amp;title=The%20Role%20of%20Microneedles%20for%20Drug%20and%20Vaccine%20Delivery&amp;author=H.L.%20Quinn&amp;author=M.C.%20Kearney&amp;author=A.J.%20Courtenay&amp;author=M.T.%20McCrudden&amp;author=R.F.%20Donnelly&amp;volume=11&amp;publication_year=2014&amp;pages=1769-1780&amp;pmid=25020088&amp;doi=10.1517/17425247.2014.938635&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B120-biomolecules-15-00088">
<span class="label">120.</span><cite>Waghule T., Singhvi G., Dubey S.K., Pandey M.M., Gupta G., Singh M., Dua K. Microneedles: A Smart Approach and Increasing Potential for Transdermal Drug Delivery System. Biomed. Pharmacother. 2019;109:12491258. doi: 10.1016/j.biopha.2018.10.078.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1016/j.biopha.2018.10.078" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/30551375/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Biomed.%20Pharmacother.&amp;title=Microneedles:%20A%20Smart%20Approach%20and%20Increasing%20Potential%20for%20Transdermal%20Drug%20Delivery%20System&amp;author=T.%20Waghule&amp;author=G.%20Singhvi&amp;author=S.K.%20Dubey&amp;author=M.M.%20Pandey&amp;author=G.%20Gupta&amp;volume=109&amp;publication_year=2019&amp;pages=1249-1258&amp;pmid=30551375&amp;doi=10.1016/j.biopha.2018.10.078&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B121-biomolecules-15-00088">
<span class="label">121.</span><cite>1Chen J., Ren H., Zhou P., Zheng S., Du B., Liu X., Xiao F. Microneedle-Mediated Drug Delivery for Cutaneous Diseases. Front. Bioeng. Biotechnol. 2022;10:1032041. doi: 10.3389/fbioe.2022.1032041.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3389/fbioe.2022.1032041" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC9618658/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/36324904/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Front.%20Bioeng.%20Biotechnol.&amp;title=Microneedle-Mediated%20Drug%20Delivery%20for%20Cutaneous%20Diseases&amp;author=J.%201Chen&amp;author=H.%20Ren&amp;author=P.%20Zhou&amp;author=S.%20Zheng&amp;author=B.%20Du&amp;volume=10&amp;publication_year=2022&amp;pages=1032041&amp;pmid=36324904&amp;doi=10.3389/fbioe.2022.1032041&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B122-biomolecules-15-00088">
<span class="label">122.</span><cite>Sartawi Z., Blackshields C., Faisal W. Dissolving Microneedles: Applications and Growing Therapeutic Potential. J. Control. Release. 2022;348:186205. doi: 10.1016/j.jconrel.2022.05.045.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1016/j.jconrel.2022.05.045" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/35662577/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=J.%20Control.%20Release&amp;title=Dissolving%20Microneedles:%20Applications%20and%20Growing%20Therapeutic%20Potential&amp;author=Z.%20Sartawi&amp;author=C.%20Blackshields&amp;author=W.%20Faisal&amp;volume=348&amp;publication_year=2022&amp;pages=186-205&amp;pmid=35662577&amp;doi=10.1016/j.jconrel.2022.05.045&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B123-biomolecules-15-00088">
<span class="label">123.</span><cite>Ita K. Dissolving Microneedles for Transdermal Drug Delivery: Advances and Challenges. Biomed. Pharmacother. 2017;93:11161127. doi: 10.1016/j.biopha.2017.07.019.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1016/j.biopha.2017.07.019" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/28738520/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Biomed.%20Pharmacother.&amp;title=Dissolving%20Microneedles%20for%20Transdermal%20Drug%20Delivery:%20Advances%20and%20Challenges&amp;author=K.%20Ita&amp;volume=93&amp;publication_year=2017&amp;pages=1116-1127&amp;pmid=28738520&amp;doi=10.1016/j.biopha.2017.07.019&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B124-biomolecules-15-00088">
<span class="label">124.</span><cite>Liu T., Chen K., Yan Z., Wang Q. Comparative Study of Permeation Effects between Vibrating Microneedle and Low-Frequency Sonophoresis Systems. Drug Deliv. Transl. Res. 2024;14:32393249. doi: 10.1007/s13346-024-01547-4.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1007/s13346-024-01547-4" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/38407771/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Drug%20Deliv.%20Transl.%20Res.&amp;title=Comparative%20Study%20of%20Permeation%20Effects%20between%20Vibrating%20Microneedle%20and%20Low-Frequency%20Sonophoresis%20Systems&amp;author=T.%20Liu&amp;author=K.%20Chen&amp;author=Z.%20Yan&amp;author=Q.%20Wang&amp;volume=14&amp;publication_year=2024&amp;pages=3239-3249&amp;pmid=38407771&amp;doi=10.1007/s13346-024-01547-4&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B125-biomolecules-15-00088">
<span class="label">125.</span><cite>Sadeqi A., Kiaee G., Zeng W., Rezaei Nejad H., Sonkusale S. Hard Polymeric Porous Microneedles on Stretchable Substrate for Transdermal Drug Delivery. Sci. Rep. 2022;12:1853. doi: 10.1038/s41598-022-05912-6.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1038/s41598-022-05912-6" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC8813900/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/35115643/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Sci.%20Rep.&amp;title=Hard%20Polymeric%20Porous%20Microneedles%20on%20Stretchable%20Substrate%20for%20Transdermal%20Drug%20Delivery&amp;author=A.%20Sadeqi&amp;author=G.%20Kiaee&amp;author=W.%20Zeng&amp;author=H.%20Rezaei%20Nejad&amp;author=S.%20Sonkusale&amp;volume=12&amp;publication_year=2022&amp;pages=1853&amp;pmid=35115643&amp;doi=10.1038/s41598-022-05912-6&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B126-biomolecules-15-00088">
<span class="label">126.</span><cite>Aldawood F.K., Andar A., Desai S. A Comprehensive Review of Microneedles: Types, Materials, Processes, Characterizations and Applications. Polymers. 2021;13:2815. doi: 10.3390/polym13162815.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3390/polym13162815" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC8400269/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/34451353/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Polymers&amp;title=A%20Comprehensive%20Review%20of%20Microneedles:%20Types,%20Materials,%20Processes,%20Characterizations%20and%20Applications&amp;author=F.K.%20Aldawood&amp;author=A.%20Andar&amp;author=S.%20Desai&amp;volume=13&amp;publication_year=2021&amp;pages=2815&amp;pmid=34451353&amp;doi=10.3390/polym13162815&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B127-biomolecules-15-00088">
<span class="label">127.</span><cite>Mohammed Y.H., Yamada M., Lin L.L., Grice J.E., Roberts M.S., Raphael A.P., Benson H.A.E., Prow T.W. Microneedle Enhanced Delivery of Cosmeceutically Relevant Peptides in Human Skin. PLoS ONE. 2014;9:e101956. doi: 10.1371/journal.pone.0101956.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1371/journal.pone.0101956" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC4102460/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/25033398/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=PLoS%20ONE&amp;title=Microneedle%20Enhanced%20Delivery%20of%20Cosmeceutically%20Relevant%20Peptides%20in%20Human%20Skin&amp;author=Y.H.%20Mohammed&amp;author=M.%20Yamada&amp;author=L.L.%20Lin&amp;author=J.E.%20Grice&amp;author=M.S.%20Roberts&amp;volume=9&amp;publication_year=2014&amp;pages=e101956&amp;pmid=25033398&amp;doi=10.1371/journal.pone.0101956&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B128-biomolecules-15-00088">
<span class="label">128.</span><cite>Park J., Lee H., Lim G.S., Kim N., Kim D., Kim Y.C. Enhanced Transdermal Drug Delivery by Sonophoresis and Simultaneous Application of Sonophoresis and Iontophoresis. AAPS PharmSciTech. 2019;20:96. doi: 10.1208/s12249-019-1309-z.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1208/s12249-019-1309-z" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/30694397/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=AAPS%20PharmSciTech&amp;title=Enhanced%20Transdermal%20Drug%20Delivery%20by%20Sonophoresis%20and%20Simultaneous%20Application%20of%20Sonophoresis%20and%20Iontophoresis&amp;author=J.%20Park&amp;author=H.%20Lee&amp;author=G.S.%20Lim&amp;author=N.%20Kim&amp;author=D.%20Kim&amp;volume=20&amp;publication_year=2019&amp;pages=96&amp;pmid=30694397&amp;doi=10.1208/s12249-019-1309-z&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B129-biomolecules-15-00088">
<span class="label">129.</span><cite>Nguyen H.X., Banga A.K. Electrically and Ultrasonically Enhanced Transdermal Delivery of Methotrexate. Pharmaceutics. 2018;10:117. doi: 10.3390/pharmaceutics10030117.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3390/pharmaceutics10030117" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC6161078/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/30081603/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Pharmaceutics&amp;title=Electrically%20and%20Ultrasonically%20Enhanced%20Transdermal%20Delivery%20of%20Methotrexate&amp;author=H.X.%20Nguyen&amp;author=A.K.%20Banga&amp;volume=10&amp;publication_year=2018&amp;pages=117&amp;pmid=30081603&amp;doi=10.3390/pharmaceutics10030117&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B130-biomolecules-15-00088">
<span class="label">130.</span><cite>Marathe D., Bhuvanashree V.S., Mehta C.H., Nayak U.Y. Low-Frequency Sonophoresis: A Promising Strategy for Enhanced Transdermal Delivery. Adv. Pharmacol. Pharm. Sci. 2024;1247450:1247450. doi: 10.1155/2024/1247450.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1155/2024/1247450" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC11208788/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/38938593/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Adv.%20Pharmacol.%20Pharm.%20Sci.&amp;title=Low-Frequency%20Sonophoresis:%20A%20Promising%20Strategy%20for%20Enhanced%20Transdermal%20Delivery&amp;author=D.%20Marathe&amp;author=V.S.%20Bhuvanashree&amp;author=C.H.%20Mehta&amp;author=U.Y.%20Nayak&amp;volume=1247450&amp;publication_year=2024&amp;pages=1247450&amp;pmid=38938593&amp;doi=10.1155/2024/1247450&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B131-biomolecules-15-00088">
<span class="label">131.</span><cite>Benson H.A.E., Grice J.E., Mohammed Y., Namjoshi S., Roberts M.S. Topical and Transdermal Drug Delivery: From Simple Potions to Smart Technologies. Curr. Drug Deliv. 2019;16:444460. doi: 10.2174/1567201816666190201143457.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.2174/1567201816666190201143457" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC6637104/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/30714524/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Curr.%20Drug%20Deliv.&amp;title=Topical%20and%20Transdermal%20Drug%20Delivery:%20From%20Simple%20Potions%20to%20Smart%20Technologies&amp;author=H.A.E.%20Benson&amp;author=J.E.%20Grice&amp;author=Y.%20Mohammed&amp;author=S.%20Namjoshi&amp;author=M.S.%20Roberts&amp;volume=16&amp;publication_year=2019&amp;pages=444-460&amp;pmid=30714524&amp;doi=10.2174/1567201816666190201143457&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B132-biomolecules-15-00088">
<span class="label">132.</span><cite>Vrani E. Sonophoresis-Mechanisms And Application. Bosn. J. Basic Med. Sci. 2004;4:2532. doi: 10.17305/bjbms.2004.3410.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.17305/bjbms.2004.3410" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC7250127/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/15629020/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Bosn.%20J.%20Basic%20Med.%20Sci.&amp;title=Sonophoresis-Mechanisms%20And%20Application&amp;author=E.%20Vrani&amp;volume=4&amp;publication_year=2004&amp;pages=25-32&amp;pmid=15629020&amp;doi=10.17305/bjbms.2004.3410&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B133-biomolecules-15-00088">
<span class="label">133.</span><cite>Mutalik S., Nayak U.Y., Kalra R., Kumar A., Kulkarni R.V., Parekh H.S. Sonophoresis-Mediated Permeation and Retention of Peptide Dendrimers across Human Epidermis. Ski. Res. Technol. 2012;18:101107. doi: 10.1111/j.1600-0846.2011.00539.x.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1111/j.1600-0846.2011.00539.x" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/21507071/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Ski.%20Res.%20Technol.&amp;title=Sonophoresis-Mediated%20Permeation%20and%20Retention%20of%20Peptide%20Dendrimers%20across%20Human%20Epidermis&amp;author=S.%20Mutalik&amp;author=U.Y.%20Nayak&amp;author=R.%20Kalra&amp;author=A.%20Kumar&amp;author=R.V.%20Kulkarni&amp;volume=18&amp;publication_year=2012&amp;pages=101-107&amp;pmid=21507071&amp;doi=10.1111/j.1600-0846.2011.00539.x&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B134-biomolecules-15-00088">
<span class="label">134.</span><cite>del Río-Sancho S., Castro-López V., Alonso M.J. Enhancing Cutaneous Delivery with Laser Technology: Almost There, but Not Yet. J. Control. Release. 2019;315:150165. doi: 10.1016/j.jconrel.2019.09.014.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1016/j.jconrel.2019.09.014" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/31629043/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=J.%20Control.%20Release&amp;title=Enhancing%20Cutaneous%20Delivery%20with%20Laser%20Technology:%20Almost%20There,%20but%20Not%20Yet&amp;author=S.%20del%20R%C3%ADo-Sancho&amp;author=V.%20Castro-L%C3%B3pez&amp;author=M.J.%20Alonso&amp;volume=315&amp;publication_year=2019&amp;pages=150-165&amp;pmid=31629043&amp;doi=10.1016/j.jconrel.2019.09.014&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B135-biomolecules-15-00088">
<span class="label">135.</span><cite>Parhi R., Mandru A. Enhancement of Skin Permeability with Thermal Ablation Techniques: Concept to Commercial Products. Drug Deliv. Transl. Res. 2021;11:817841. doi: 10.1007/s13346-020-00823-3.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1007/s13346-020-00823-3" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC7372979/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/32696221/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Drug%20Deliv.%20Transl.%20Res.&amp;title=Enhancement%20of%20Skin%20Permeability%20with%20Thermal%20Ablation%20Techniques:%20Concept%20to%20Commercial%20Products&amp;author=R.%20Parhi&amp;author=A.%20Mandru&amp;volume=11&amp;publication_year=2021&amp;pages=817-841&amp;pmid=32696221&amp;doi=10.1007/s13346-020-00823-3&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B136-biomolecules-15-00088">
<span class="label">136.</span><cite>Hsiao C.Y., Yang S.C., Alalaiwe A., Fang J.Y. Laser Ablation and Topical Drug Delivery: A Review of Recent Advances. Expert Opin. Drug Deliv. 2019;16:937952. doi: 10.1080/17425247.2019.1649655.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1080/17425247.2019.1649655" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/31389261/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Expert%20Opin.%20Drug%20Deliv.&amp;title=Laser%20Ablation%20and%20Topical%20Drug%20Delivery:%20A%20Review%20of%20Recent%20Advances&amp;author=C.Y.%20Hsiao&amp;author=S.C.%20Yang&amp;author=A.%20Alalaiwe&amp;author=J.Y.%20Fang&amp;volume=16&amp;publication_year=2019&amp;pages=937-952&amp;pmid=31389261&amp;doi=10.1080/17425247.2019.1649655&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B137-biomolecules-15-00088">
<span class="label">137.</span><cite>Alkilani A.Z., McCrudden M.T.C., Donnelly R.F. Transdermal Drug Delivery: Innovative Pharmaceutical Developments Based on Disruption of the Barrier Properties of the Stratum Corneum. Pharmaceutics. 2015;7:438470. doi: 10.3390/pharmaceutics7040438.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3390/pharmaceutics7040438" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC4695828/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/26506371/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Pharmaceutics&amp;title=Transdermal%20Drug%20Delivery:%20Innovative%20Pharmaceutical%20Developments%20Based%20on%20Disruption%20of%20the%20Barrier%20Properties%20of%20the%20Stratum%20Corneum&amp;author=A.Z.%20Alkilani&amp;author=M.T.C.%20McCrudden&amp;author=R.F.%20Donnelly&amp;volume=7&amp;publication_year=2015&amp;pages=438-470&amp;pmid=26506371&amp;doi=10.3390/pharmaceutics7040438&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B138-biomolecules-15-00088">
<span class="label">138.</span><cite>Tóth G., Illés G., Nazymbekov G., Mbithi N., Almási G., Hebling J. Possibility of CO2 Laser-Pumped Multi-Millijoule-Level Ultrafast Pulse Terahertz Sources. Sci. Rep. 2024;14:999. doi: 10.1038/s41598-023-51139-4.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1038/s41598-023-51139-4" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC10781974/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/38200090/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Sci.%20Rep.&amp;title=Possibility%20of%20CO2%20Laser-Pumped%20Multi-Millijoule-Level%20Ultrafast%20Pulse%20Terahertz%20Sources&amp;author=G.%20T%C3%B3th&amp;author=G.%20Ill%C3%A9s&amp;author=G.%20Nazymbekov&amp;author=N.%20Mbithi&amp;author=G.%20Alm%C3%A1si&amp;volume=14&amp;publication_year=2024&amp;pages=999&amp;pmid=38200090&amp;doi=10.1038/s41598-023-51139-4&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B139-biomolecules-15-00088">
<span class="label">139.</span><cite>Belletti S., Madeddu F., Brando A., Provenzano E., Nisticò S.P., Fusco I., Bennardo L. Laser Impacts on Skin Rejuvenation: The Use of a Synergistic Emission of CO2 and 1540 Nm Wavelengths. Medicina. 2023;59:1857. doi: 10.3390/medicina59101857.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3390/medicina59101857" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC10608664/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/37893575/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Medicina&amp;title=Laser%20Impacts%20on%20Skin%20Rejuvenation:%20The%20Use%20of%20a%20Synergistic%20Emission%20of%20CO2%20and%201540%20Nm%20Wavelengths&amp;author=S.%20Belletti&amp;author=F.%20Madeddu&amp;author=A.%20Brando&amp;author=E.%20Provenzano&amp;author=S.P.%20Nistic%C3%B2&amp;volume=59&amp;publication_year=2023&amp;pages=1857&amp;pmid=37893575&amp;doi=10.3390/medicina59101857&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B140-biomolecules-15-00088">
<span class="label">140.</span><cite>1Nisticò S.P., Cannarozzo G., Campolmi P., Dragoni F., Moretti S., Patruno C., Bennardo L. Erbium Laser for Skin Surgery: A Single-Center Twenty-Five Years Experience. Medicines. 2021;8:74. doi: 10.3390/medicines8120074.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3390/medicines8120074" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC8705569/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/34940286/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Medicines&amp;title=Erbium%20Laser%20for%20Skin%20Surgery:%20A%20Single-Center%20Twenty-Five%20Years%E2%80%99%20Experience&amp;author=S.P.%201Nistic%C3%B2&amp;author=G.%20Cannarozzo&amp;author=P.%20Campolmi&amp;author=F.%20Dragoni&amp;author=S.%20Moretti&amp;volume=8&amp;publication_year=2021&amp;pages=74&amp;pmid=34940286&amp;doi=10.3390/medicines8120074&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B141-biomolecules-15-00088">
<span class="label">141.</span><cite>Zhao Y., Voyer J., Li Y., Kang X., Chen X. Laser Microporation Facilitates Topical Drug Delivery: A Comprehensive Review about Preclinical Development and Clinical Application. Expert Opin. Drug Deliv. 2023;20:3154. doi: 10.1080/17425247.2023.2152002.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1080/17425247.2023.2152002" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC9825102/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/36519356/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Expert%20Opin.%20Drug%20Deliv.&amp;title=Laser%20Microporation%20Facilitates%20Topical%20Drug%20Delivery:%20A%20Comprehensive%20Review%20about%20Preclinical%20Development%20and%20Clinical%20Application&amp;author=Y.%20Zhao&amp;author=J.%20Voyer&amp;author=Y.%20Li&amp;author=X.%20Kang&amp;author=X.%20Chen&amp;volume=20&amp;publication_year=2023&amp;pages=31-54&amp;pmid=36519356&amp;doi=10.1080/17425247.2023.2152002&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B142-biomolecules-15-00088">
<span class="label">142.</span><cite>Lee W.R., Hsiao C.Y., Chang Z.Y., Wang P.W., Aljuffali I.A., Lin J.Y., Fang J.Y. Cutaneous Delivery of Cosmeceutical Peptides Enhanced by Picosecond-and Nanosecond-Domain Nd:YAG Lasers with Quick Recovery of the Skin Barrier Function: Comparison with Microsecond-Domain Ablative Lasers. Pharmaceutics. 2022;14:450. doi: 10.3390/pharmaceutics14020450.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3390/pharmaceutics14020450" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC8880571/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/35214181/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Pharmaceutics&amp;title=Cutaneous%20Delivery%20of%20Cosmeceutical%20Peptides%20Enhanced%20by%20Picosecond-and%20Nanosecond-Domain%20Nd:YAG%20Lasers%20with%20Quick%20Recovery%20of%20the%20Skin%20Barrier%20Function:%20Comparison%20with%20Microsecond-Domain%20Ablative%20Lasers&amp;author=W.R.%20Lee&amp;author=C.Y.%20Hsiao&amp;author=Z.Y.%20Chang&amp;author=P.W.%20Wang&amp;author=I.A.%20Aljuffali&amp;volume=14&amp;publication_year=2022&amp;pages=450&amp;pmid=35214181&amp;doi=10.3390/pharmaceutics14020450&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B143-biomolecules-15-00088">
<span class="label">143.</span><cite>Szunerits S., Boukherroub R. Heat: A Highly Efficient Skin Enhancer for Transdermal Drug Delivery. Front. Bioeng. Biotechnol. 2018;6:15. doi: 10.3389/fbioe.2018.00015.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3389/fbioe.2018.00015" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC5818408/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/29497609/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Front.%20Bioeng.%20Biotechnol.&amp;title=Heat:%20A%20Highly%20Efficient%20Skin%20Enhancer%20for%20Transdermal%20Drug%20Delivery&amp;author=S.%20Szunerits&amp;author=R.%20Boukherroub&amp;volume=6&amp;publication_year=2018&amp;pages=15&amp;pmid=29497609&amp;doi=10.3389/fbioe.2018.00015&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B144-biomolecules-15-00088">
<span class="label">144.</span><cite>Jeong W.Y., Kwon M., Choi H.E., Kim K.S. Recent Advances in Transdermal Drug Delivery Systems: A Review. Biomater. Res. 2021;25:24. doi: 10.1186/s40824-021-00226-6.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1186/s40824-021-00226-6" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC8317283/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/34321111/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Biomater.%20Res.&amp;title=Recent%20Advances%20in%20Transdermal%20Drug%20Delivery%20Systems:%20A%20Review&amp;author=W.Y.%20Jeong&amp;author=M.%20Kwon&amp;author=H.E.%20Choi&amp;author=K.S.%20Kim&amp;volume=25&amp;publication_year=2021&amp;pages=24&amp;pmid=34321111&amp;doi=10.1186/s40824-021-00226-6&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B145-biomolecules-15-00088">
<span class="label">145.</span><cite>Xiang N., Huang Z., Zhang C., Huang J., Wang Z., Zhang J., Wu C., Peng W., Zhang J. Antiaging Synergistic Effect in Noninvasive Transdermal Delivery of Peptide Loaded Liposomes by Low Energy/Frequency Radiofrequency. Int. J. Pharm. X. 2024;8:100289. doi: 10.1016/j.ijpx.2024.100289.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1016/j.ijpx.2024.100289" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Int.%20J.%20Pharm.%20X&amp;title=Antiaging%20Synergistic%20Effect%20in%20Noninvasive%20Transdermal%20Delivery%20of%20Peptide%20Loaded%20Liposomes%20by%20Low%20Energy/Frequency%20Radiofrequency&amp;author=N.%20Xiang&amp;author=Z.%20Huang&amp;author=C.%20Zhang&amp;author=J.%20Huang&amp;author=Z.%20Wang&amp;volume=8&amp;publication_year=2024&amp;pages=100289&amp;doi=10.1016/j.ijpx.2024.100289&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B146-biomolecules-15-00088">
<span class="label">146.</span><cite>Barnes T.M., Mijaljica D., Townley J.P., Spada F., Harrison I.P. Vehicles for Drug Delivery and Cosmetic Moisturizers: Review and Comparison. Pharmaceutics. 2021;13:2012. doi: 10.3390/pharmaceutics13122012.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3390/pharmaceutics13122012" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC8703425/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/34959294/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Pharmaceutics&amp;title=Vehicles%20for%20Drug%20Delivery%20and%20Cosmetic%20Moisturizers:%20Review%20and%20Comparison&amp;author=T.M.%20Barnes&amp;author=D.%20Mijaljica&amp;author=J.P.%20Townley&amp;author=F.%20Spada&amp;author=I.P.%20Harrison&amp;volume=13&amp;publication_year=2021&amp;pages=2012&amp;pmid=34959294&amp;doi=10.3390/pharmaceutics13122012&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B147-biomolecules-15-00088">
<span class="label">147.</span><cite>Lunter D., Klang V., Eichner A., Savic S.M., Savic S., Lian G., Erdő F. Progress in Topical and Transdermal Drug Delivery Research—Focus on Nanoformulations. Pharmaceutics. 2024;16:817. doi: 10.3390/pharmaceutics16060817.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3390/pharmaceutics16060817" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC11207871/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/38931938/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Pharmaceutics&amp;title=Progress%20in%20Topical%20and%20Transdermal%20Drug%20Delivery%20Research%E2%80%94Focus%20on%20Nanoformulations&amp;author=D.%20Lunter&amp;author=V.%20Klang&amp;author=A.%20Eichner&amp;author=S.M.%20Savic&amp;author=S.%20Savic&amp;volume=16&amp;publication_year=2024&amp;pages=817&amp;pmid=38931938&amp;doi=10.3390/pharmaceutics16060817&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B148-biomolecules-15-00088">
<span class="label">148.</span><cite>Lewińska A., Domżał-Kędzia M., Kierul K., Bochynek M., Pannert D., Nowaczyk P., Łukaszewicz M. Targeted Hybrid Nanocarriers as a System Enhancing the Skin Structure. Molecules. 2021;26:1063. doi: 10.3390/molecules26041063.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3390/molecules26041063" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC7923190/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/33670519/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Molecules&amp;title=Targeted%20Hybrid%20Nanocarriers%20as%20a%20System%20Enhancing%20the%20Skin%20Structure&amp;author=A.%20Lewi%C5%84ska&amp;author=M.%20Dom%C5%BCa%C5%82-K%C4%99dzia&amp;author=K.%20Kierul&amp;author=M.%20Bochynek&amp;author=D.%20Pannert&amp;volume=26&amp;publication_year=2021&amp;pages=1063&amp;pmid=33670519&amp;doi=10.3390/molecules26041063&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B149-biomolecules-15-00088">
<span class="label">149.</span><cite>Magrode N., Poomanee W., Kiattisin K., Ampasavate C. Microemulsions and Nanoemulsions for Topical Delivery of Tripeptide-3: From Design of Experiment to Anti-Sebum Efficacy on Facial Skin. Pharmaceutics. 2024;16:554. doi: 10.3390/pharmaceutics16040554.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3390/pharmaceutics16040554" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC11053593/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/38675215/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Pharmaceutics&amp;title=Microemulsions%20and%20Nanoemulsions%20for%20Topical%20Delivery%20of%20Tripeptide-3:%20From%20Design%20of%20Experiment%20to%20Anti-Sebum%20Efficacy%20on%20Facial%20Skin&amp;author=N.%20Magrode&amp;author=W.%20Poomanee&amp;author=K.%20Kiattisin&amp;author=C.%20Ampasavate&amp;volume=16&amp;publication_year=2024&amp;pages=554&amp;pmid=38675215&amp;doi=10.3390/pharmaceutics16040554&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B150-biomolecules-15-00088">
<span class="label">150.</span><cite>Samson S., Basri M., Fard Masoumi H.R., Abdul Malek E., Abedi Karjiban R. An Artificial Neural Network Based Analysis of Factors Controlling Particle Size in a Virgin Coconut Oil-Based Nanoemulsion System Containing Copper Peptide. PLoS ONE. 2016;11:e0157737. doi: 10.1371/journal.pone.0157737.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1371/journal.pone.0157737" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC4934903/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/27383135/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=PLoS%20ONE&amp;title=An%20Artificial%20Neural%20Network%20Based%20Analysis%20of%20Factors%20Controlling%20Particle%20Size%20in%20a%20Virgin%20Coconut%20Oil-Based%20Nanoemulsion%20System%20Containing%20Copper%20Peptide&amp;author=S.%20Samson&amp;author=M.%20Basri&amp;author=H.R.%20Fard%20Masoumi&amp;author=E.%20Abdul%20Malek&amp;author=R.%20Abedi%20Karjiban&amp;volume=11&amp;publication_year=2016&amp;pages=e0157737&amp;pmid=27383135&amp;doi=10.1371/journal.pone.0157737&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B151-biomolecules-15-00088">
<span class="label">151.</span><cite>Han F., Luo D., Qu W., Chen D., Hong Y., Sheng J., Yang X., Liu W. Nanoliposomes Codelivering Bioactive Peptides Produce Enhanced Anti-Aging Effect in Human Skin. J. Drug Deliv. Sci. Technol. 2020;57:101693. doi: 10.1016/j.jddst.2020.101693.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1016/j.jddst.2020.101693" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=J.%20Drug%20Deliv.%20Sci.%20Technol.&amp;title=Nanoliposomes%20Codelivering%20Bioactive%20Peptides%20Produce%20Enhanced%20Anti-Aging%20Effect%20in%20Human%20Skin&amp;author=F.%20Han&amp;author=D.%20Luo&amp;author=W.%20Qu&amp;author=D.%20Chen&amp;author=Y.%20Hong&amp;volume=57&amp;publication_year=2020&amp;pages=101693&amp;doi=10.1016/j.jddst.2020.101693&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B152-biomolecules-15-00088">
<span class="label">152.</span><cite>Vitali A., Paolicelli P., Bigi B., Trilli J., Di Muzio L., Carriero V.C., Casadei M.A., Petralito S. Liposome Encapsulation of the PalmitoylKTTKS Peptide: Structural and Functional Characterization. Pharmaceutics. 2024;16:219. doi: 10.3390/pharmaceutics16020219.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3390/pharmaceutics16020219" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC10892597/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/38399273/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Pharmaceutics&amp;title=Liposome%20Encapsulation%20of%20the%20Palmitoyl%E2%80%93KTTKS%20Peptide:%20Structural%20and%20Functional%20Characterization&amp;author=A.%20Vitali&amp;author=P.%20Paolicelli&amp;author=B.%20Bigi&amp;author=J.%20Trilli&amp;author=L.%20Di%20Muzio&amp;volume=16&amp;publication_year=2024&amp;pages=219&amp;pmid=38399273&amp;doi=10.3390/pharmaceutics16020219&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B153-biomolecules-15-00088">
<span class="label">153.</span><cite>Niu J., Yuan M., Li H., Liu Y., Wang L., Fan Y., Zhang Y., Liu X., Li L., Zhang J., et al. Pentapeptide Modified Ethosomes for Enhanced Skin Retention and Topical Efficacy Activity of Indomethacin. Drug Deliv. 2022;29:18001810. doi: 10.1080/10717544.2022.2081739.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1080/10717544.2022.2081739" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC9176705/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/35656937/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Drug%20Deliv.&amp;title=Pentapeptide%20Modified%20Ethosomes%20for%20Enhanced%20Skin%20Retention%20and%20Topical%20Efficacy%20Activity%20of%20Indomethacin&amp;author=J.%20Niu&amp;author=M.%20Yuan&amp;author=H.%20Li&amp;author=Y.%20Liu&amp;author=L.%20Wang&amp;volume=29&amp;publication_year=2022&amp;pages=1800-1810&amp;pmid=35656937&amp;doi=10.1080/10717544.2022.2081739&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B154-biomolecules-15-00088">
<span class="label">154.</span><cite>Kim J.-E., Oh G.-H., Jang G.-H., Kim Y.-M., Park Y.-J. Transformer-Ethosomes with Palmitoyl Pentapeptide for Improved Transdermal Delivery. J. Drug Deliv. Sci. Technol. 2019;52:460467. doi: 10.1016/j.jddst.2019.04.039.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1016/j.jddst.2019.04.039" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=J.%20Drug%20Deliv.%20Sci.%20Technol.&amp;title=Transformer-Ethosomes%20with%20Palmitoyl%20Pentapeptide%20for%20Improved%20Transdermal%20Delivery&amp;author=J.-E.%20Kim&amp;author=G.-H.%20Oh&amp;author=G.-H.%20Jang&amp;author=Y.-M.%20Kim&amp;author=Y.-J.%20Park&amp;volume=52&amp;publication_year=2019&amp;pages=460-467&amp;doi=10.1016/j.jddst.2019.04.039&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B155-biomolecules-15-00088">
<span class="label">155.</span><cite>1Badenhorst T., Svirskis D., Wu Z. Physicochemical Characterization of Native Glycyl-l-Histidyl-l-Lysine Tripeptide for Wound Healing and Anti-Aging: A Preformulation Study for Dermal Delivery. Pharm. Dev. Technol. 2016;21:152160. doi: 10.3109/10837450.2014.979944.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3109/10837450.2014.979944" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/25384620/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Pharm.%20Dev.%20Technol.&amp;title=Physicochemical%20Characterization%20of%20Native%20Glycyl-l-Histidyl-l-Lysine%20Tripeptide%20for%20Wound%20Healing%20and%20Anti-Aging:%20A%20Preformulation%20Study%20for%20Dermal%20Delivery&amp;author=T.%201Badenhorst&amp;author=D.%20Svirskis&amp;author=Z.%20Wu&amp;volume=21&amp;publication_year=2016&amp;pages=152-160&amp;pmid=25384620&amp;doi=10.3109/10837450.2014.979944&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B156-biomolecules-15-00088">
<span class="label">156.</span><cite>Pawłowska M., Marzec M., Jankowiak W., Nowak I. Solid Lipid Nanoparticles Incorporated with Retinol and Pentapeptide-18—Optimization, Characterization, and Cosmetic Application. Int. J. Mol. Sci. 2024;25:10078. doi: 10.3390/ijms251810078.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3390/ijms251810078" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC11432460/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/39337562/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Int.%20J.%20Mol.%20Sci.&amp;title=Solid%20Lipid%20Nanoparticles%20Incorporated%20with%20Retinol%20and%20Pentapeptide-18%E2%80%94Optimization,%20Characterization,%20and%20Cosmetic%20Application&amp;author=M.%20Paw%C5%82owska&amp;author=M.%20Marzec&amp;author=W.%20Jankowiak&amp;author=I.%20Nowak&amp;volume=25&amp;publication_year=2024&amp;pages=10078&amp;pmid=39337562&amp;doi=10.3390/ijms251810078&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B157-biomolecules-15-00088">
<span class="label">157.</span><cite>Zielinska A., Nowak I. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers as Novel Carriers for Cosmetic Ingredients. Nanobiomater. Galen. Formul. Cosmet. Appl. Nanobiomater. 2016;10:231255.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Nanobiomater.%20Galen.%20Formul.%20Cosmet.%20Appl.%20Nanobiomater.&amp;title=Solid%20Lipid%20Nanoparticles%20and%20Nanostructured%20Lipid%20Carriers%20as%20Novel%20Carriers%20for%20Cosmetic%20Ingredients&amp;author=A.%20Zielinska&amp;author=I.%20Nowak&amp;volume=10&amp;publication_year=2016&amp;pages=231-255&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B158-biomolecules-15-00088">
<span class="label">158.</span><cite>Viladot Petit J.L. Nanocapsules Containing Microemulsions. EP2618926B1. ES Patent. 2019 May 8;</cite>
</li>
<li id="B159-biomolecules-15-00088">
<span class="label">159.</span><cite>Akhlaghi S.P., Loh W. Interactions and Release of Two Palmitoyl Peptides from Phytantriol Cubosomes. Eur. J. Pharm. Biopharm. 2017;117:6067. doi: 10.1016/j.ejpb.2017.03.022.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1016/j.ejpb.2017.03.022" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/28377272/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Eur.%20J.%20Pharm.%20Biopharm.&amp;title=Interactions%20and%20Release%20of%20Two%20Palmitoyl%20Peptides%20from%20Phytantriol%20Cubosomes&amp;author=S.P.%20Akhlaghi&amp;author=W.%20Loh&amp;volume=117&amp;publication_year=2017&amp;pages=60-67&amp;pmid=28377272&amp;doi=10.1016/j.ejpb.2017.03.022&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B160-biomolecules-15-00088">
<span class="label">160.</span><cite>Shaker D.S., Ishak R.A.H., Ghoneim A., Elhuoni M.A. Nanoemulsion: A Review on Mechanisms for the Transdermal Delivery of Hydrophobic and Hydrophilic Drugs. Sci. Pharm. 2019;87:17. doi: 10.3390/scipharm87030017.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3390/scipharm87030017" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Sci.%20Pharm.&amp;title=Nanoemulsion:%20A%20Review%20on%20Mechanisms%20for%20the%20Transdermal%20Delivery%20of%20Hydrophobic%20and%20Hydrophilic%20Drugs&amp;author=D.S.%20Shaker&amp;author=R.A.H.%20Ishak&amp;author=A.%20Ghoneim&amp;author=M.A.%20Elhuoni&amp;volume=87&amp;publication_year=2019&amp;pages=17&amp;doi=10.3390/scipharm87030017&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B161-biomolecules-15-00088">
<span class="label">161.</span><cite>Rai V.K., Mishra N., Yadav K.S., Yadav N.P. Nanoemulsion as Pharmaceutical Carrier for Dermal and Transdermal Drug Delivery: Formulation Development, Stability Issues, Basic Considerations and Applications. J. Control. Release. 2018;270:203225. doi: 10.1016/j.jconrel.2017.11.049.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1016/j.jconrel.2017.11.049" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/29199062/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=J.%20Control.%20Release&amp;title=Nanoemulsion%20as%20Pharmaceutical%20Carrier%20for%20Dermal%20and%20Transdermal%20Drug%20Delivery:%20Formulation%20Development,%20Stability%20Issues,%20Basic%20Considerations%20and%20Applications&amp;author=V.K.%20Rai&amp;author=N.%20Mishra&amp;author=K.S.%20Yadav&amp;author=N.P.%20Yadav&amp;volume=270&amp;publication_year=2018&amp;pages=203-225&amp;pmid=29199062&amp;doi=10.1016/j.jconrel.2017.11.049&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B162-biomolecules-15-00088">
<span class="label">162.</span><cite>Wilson R.J., Li Y., Yang G., Zhao C.X. Nanoemulsions for Drug Delivery. Particuology. 2022;64:8597. doi: 10.1016/j.partic.2021.05.009.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1016/j.partic.2021.05.009" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Particuology&amp;title=Nanoemulsions%20for%20Drug%20Delivery&amp;author=R.J.%20Wilson&amp;author=Y.%20Li&amp;author=G.%20Yang&amp;author=C.X.%20Zhao&amp;volume=64&amp;publication_year=2022&amp;pages=85-97&amp;doi=10.1016/j.partic.2021.05.009&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B163-biomolecules-15-00088">
<span class="label">163.</span><cite>Souto E.B., Cano A., Martins-Gomes C., Coutinho T.E., Zielińska A., Silva A.M. Microemulsions and Nanoemulsions in Skin Drug Delivery. Bioengineering. 2022;9:158. doi: 10.3390/bioengineering9040158.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3390/bioengineering9040158" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC9028917/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/35447718/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Bioengineering&amp;title=Microemulsions%20and%20Nanoemulsions%20in%20Skin%20Drug%20Delivery&amp;author=E.B.%20Souto&amp;author=A.%20Cano&amp;author=C.%20Martins-Gomes&amp;author=T.E.%20Coutinho&amp;author=A.%20Zieli%C5%84ska&amp;volume=9&amp;publication_year=2022&amp;pages=158&amp;pmid=35447718&amp;doi=10.3390/bioengineering9040158&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B164-biomolecules-15-00088">
<span class="label">164.</span><cite>Samson S., Basri M., Fard Masoumi H.R., Abedi Karjiban R., Abdul Malek E. Design and Development of a Nanoemulsion System Containing Copper Peptide by D-Optimal Mixture Design and Evaluation of Its Physicochemical Properties. RSC Adv. 2016;6:1784517856. doi: 10.1039/C5RA24379C.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1039/C5RA24379C" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=RSC%20Adv.&amp;title=Design%20and%20Development%20of%20a%20Nanoemulsion%20System%20Containing%20Copper%20Peptide%20by%20D-Optimal%20Mixture%20Design%20and%20Evaluation%20of%20Its%20Physicochemical%20Properties&amp;author=S.%20Samson&amp;author=M.%20Basri&amp;author=H.R.%20Fard%20Masoumi&amp;author=R.%20Abedi%20Karjiban&amp;author=E.%20Abdul%20Malek&amp;volume=6&amp;publication_year=2016&amp;pages=17845-17856&amp;doi=10.1039/C5RA24379C&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B165-biomolecules-15-00088">
<span class="label">165.</span><cite>Siler-Marinkovic S. Liposomes as Drug Delivery Systems in Dermal and Transdermal Drug Delivery BT—Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement: Nanocarriers. In: Dragicevic N., Maibach H.I., editors. Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement. Springer; Berlin/Heidelberg, Germany: 2016. pp. 1538.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?title=Percutaneous%20Penetration%20Enhancers%20Chemical%20Methods%20in%20Penetration%20Enhancement&amp;author=S.%20Siler-Marinkovic&amp;publication_year=2016&amp;isbn=978-3-662-47862-2&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B166-biomolecules-15-00088">
<span class="label">166.</span><cite>Mohamad E.A., Fahmy H.M. Niosomes and Liposomes as Promising Carriers for Dermal Delivery of Annona Squamosa Extract. Braz. J. Pharm. Sci. 2020;56:e18096. doi: 10.1590/s2175-97902019000318096.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1590/s2175-97902019000318096" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Braz.%20J.%20Pharm.%20Sci.&amp;title=Niosomes%20and%20Liposomes%20as%20Promising%20Carriers%20for%20Dermal%20Delivery%20of%20Annona%20Squamosa%20Extract&amp;author=E.A.%20Mohamad&amp;author=H.M.%20Fahmy&amp;volume=56&amp;publication_year=2020&amp;pages=e18096&amp;doi=10.1590/s2175-97902019000318096&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B167-biomolecules-15-00088">
<span class="label">167.</span><cite>Badenhorst T., Svirskis D., Wu Z. Pharmaceutical Strategies for the Topical Dermal Delivery of Peptides/Proteins for Cosmetic and Therapeutic Applications. Austin J. Pharmacol. Ther. 2014;2:110.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Austin%20J.%20Pharmacol.%20Ther.&amp;title=Pharmaceutical%20Strategies%20for%20the%20Topical%20Dermal%20Delivery%20of%20Peptides/Proteins%20for%20Cosmetic%20and%20Therapeutic%20Applications&amp;author=T.%20Badenhorst&amp;author=D.%20Svirskis&amp;author=Z.%20Wu&amp;volume=2&amp;publication_year=2014&amp;pages=1-10&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B168-biomolecules-15-00088">
<span class="label">168.</span><cite>Jafari A., Daneshamouz S., Ghasemiyeh P., Mohammadi-Samani S. Ethosomes as Dermal/Transdermal Drug Delivery Systems: Applications, Preparation and Characterization. J. Liposome Res. 2023;33:3452. doi: 10.1080/08982104.2022.2085742.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1080/08982104.2022.2085742" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/35695714/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=J.%20Liposome%20Res.&amp;title=Ethosomes%20as%20Dermal/Transdermal%20Drug%20Delivery%20Systems:%20Applications,%20Preparation%20and%20Characterization&amp;author=A.%20Jafari&amp;author=S.%20Daneshamouz&amp;author=P.%20Ghasemiyeh&amp;author=S.%20Mohammadi-Samani&amp;volume=33&amp;publication_year=2023&amp;pages=34-52&amp;pmid=35695714&amp;doi=10.1080/08982104.2022.2085742&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B169-biomolecules-15-00088">
<span class="label">169.</span><cite>Abu-Huwaij R., Zidan A.N. Unlocking the Potential of Cosmetic Dermal Delivery with Ethosomes: A Comprehensive Review. J. Cosmet. Dermatol. 2024;23:1726. doi: 10.1111/jocd.15895.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1111/jocd.15895" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/37393573/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=J.%20Cosmet.%20Dermatol.&amp;title=Unlocking%20the%20Potential%20of%20Cosmetic%20Dermal%20Delivery%20with%20Ethosomes:%20A%20Comprehensive%20Review&amp;author=R.%20Abu-Huwaij&amp;author=A.N.%20Zidan&amp;volume=23&amp;publication_year=2024&amp;pages=17-26&amp;pmid=37393573&amp;doi=10.1111/jocd.15895&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B170-biomolecules-15-00088">
<span class="label">170.</span><cite>Shitole M., Nangare S., Patil U., Jadhav N.R. Review on Drug Delivery Applications of Ethosomes: Current Developments and Prospects. Thai J. Pharm. Sci. 2022;46:251265. doi: 10.56808/3027-7922.2568.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.56808/3027-7922.2568" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Thai%20J.%20Pharm.%20Sci.&amp;title=Review%20on%20Drug%20Delivery%20Applications%20of%20Ethosomes:%20Current%20Developments%20and%20Prospects&amp;author=M.%20Shitole&amp;author=S.%20Nangare&amp;author=U.%20Patil&amp;author=N.R.%20Jadhav&amp;volume=46&amp;publication_year=2022&amp;pages=251-265&amp;doi=10.56808/3027-7922.2568&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B171-biomolecules-15-00088">
<span class="label">171.</span><cite>Verma P., Pathak K. Therapeutic and Cosmeceutical Potential of Ethosomes: An Overview. J. Adv. Pharm. Technol. Res. 2010;1:274282. doi: 10.4103/0110-5558.72415.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.4103/0110-5558.72415" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC3255417/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/22247858/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=J.%20Adv.%20Pharm.%20Technol.%20Res.&amp;title=Therapeutic%20and%20Cosmeceutical%20Potential%20of%20Ethosomes:%20An%20Overview&amp;author=P.%20Verma&amp;author=K.%20Pathak&amp;volume=1&amp;publication_year=2010&amp;pages=274-282&amp;pmid=22247858&amp;doi=10.4103/0110-5558.72415&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B172-biomolecules-15-00088">
<span class="label">172.</span><cite>Chauhan N., Vasava P., Khan S.L., Siddiqui F.A., Islam F., Chopra H., Emran T. Bin. Ethosomes: A Novel Drug Carrier. Ann. Med. Surg. 2022;82:104595. doi: 10.1016/j.amsu.2022.104595.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1016/j.amsu.2022.104595" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC9482122/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/36124209/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Ann.%20Med.%20Surg.&amp;title=Bin.%20Ethosomes:%20A%20Novel%20Drug%20Carrier&amp;author=N.%20Chauhan&amp;author=P.%20Vasava&amp;author=S.L.%20Khan&amp;author=F.A.%20Siddiqui&amp;author=F.%20Islam&amp;volume=82&amp;publication_year=2022&amp;pages=104595&amp;pmid=36124209&amp;doi=10.1016/j.amsu.2022.104595&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B173-biomolecules-15-00088">
<span class="label">173.</span><cite>Pakhale N.V., Gondkar S.B., Saudagar R.B. Ethosomes: Transdermal Drug Delivery System. J. Drug Deliv. Ther. 2019;9:729733. doi: 10.22270/jddt.v9i3.2692.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.22270/jddt.v9i3.2692" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=J.%20Drug%20Deliv.%20Ther.&amp;title=Ethosomes:%20Transdermal%20Drug%20Delivery%20System&amp;author=N.V.%20Pakhale&amp;author=S.B.%20Gondkar&amp;author=R.B.%20Saudagar&amp;volume=9&amp;publication_year=2019&amp;pages=729-733&amp;doi=10.22270/jddt.v9i3.2692&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B174-biomolecules-15-00088">
<span class="label">174.</span><cite>Mawazi S.M., Ann T.J., Widodo R.T. Application of Niosomes in Cosmetics: A Systematic Review. Cosmetics. 2022;9:127. doi: 10.3390/cosmetics9060127.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3390/cosmetics9060127" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Cosmetics&amp;title=Application%20of%20Niosomes%20in%20Cosmetics:%20A%20Systematic%20Review&amp;author=S.M.%20Mawazi&amp;author=T.J.%20Ann&amp;author=R.T.%20Widodo&amp;volume=9&amp;publication_year=2022&amp;pages=127&amp;doi=10.3390/cosmetics9060127&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B175-biomolecules-15-00088">
<span class="label">175.</span><cite>Li D., Martini N., Wu Z., Chen S., Falconer J.R., Locke M., Zhang Z., Wen J. Niosomal Nanocarriers for Enhanced Dermal Delivery of Epigallocatechin Gallate for Protection against Oxidative Stress of the Skin. Pharmaceutics. 2022;14:726. doi: 10.3390/pharmaceutics14040726.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3390/pharmaceutics14040726" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC9029719/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/35456560/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Pharmaceutics&amp;title=Niosomal%20Nanocarriers%20for%20Enhanced%20Dermal%20Delivery%20of%20Epigallocatechin%20Gallate%20for%20Protection%20against%20Oxidative%20Stress%20of%20the%20Skin&amp;author=D.%20Li&amp;author=N.%20Martini&amp;author=Z.%20Wu&amp;author=S.%20Chen&amp;author=J.R.%20Falconer&amp;volume=14&amp;publication_year=2022&amp;pages=726&amp;pmid=35456560&amp;doi=10.3390/pharmaceutics14040726&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B176-biomolecules-15-00088">
<span class="label">176.</span><cite>Santos A.C., Morais F., Simões A., Pereira I., Sequeira J.A.D., Pereira-Silva M., Veiga F., Ribeiro A. Nanotechnology for the Development of New Cosmetic Formulations. Expert Opin. Drug Deliv. 2019;16:313330. doi: 10.1080/17425247.2019.1585426.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1080/17425247.2019.1585426" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/30793641/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Expert%20Opin.%20Drug%20Deliv.&amp;title=Nanotechnology%20for%20the%20Development%20of%20New%20Cosmetic%20Formulations&amp;author=A.C.%20Santos&amp;author=F.%20Morais&amp;author=A.%20Sim%C3%B5es&amp;author=I.%20Pereira&amp;author=J.A.D.%20Sequeira&amp;volume=16&amp;publication_year=2019&amp;pages=313-330&amp;pmid=30793641&amp;doi=10.1080/17425247.2019.1585426&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B177-biomolecules-15-00088">
<span class="label">177.</span><cite>Moammeri A., Chegeni M.M., Sahrayi H., Ghafelehbashi R., Memarzadeh F., Mansouri A., Akbarzadeh I., Abtahi M.S., Hejabi F., Ren Q. Current Advances in Niosomes Applications for Drug Delivery and Cancer Treatment. Mater. Today Bio. 2023;23:100837. doi: 10.1016/j.mtbio.2023.100837.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1016/j.mtbio.2023.100837" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC10632535/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/37953758/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Mater.%20Today%20Bio.&amp;title=Current%20Advances%20in%20Niosomes%20Applications%20for%20Drug%20Delivery%20and%20Cancer%20Treatment&amp;author=A.%20Moammeri&amp;author=M.M.%20Chegeni&amp;author=H.%20Sahrayi&amp;author=R.%20Ghafelehbashi&amp;author=F.%20Memarzadeh&amp;volume=23&amp;publication_year=2023&amp;pages=100837&amp;pmid=37953758&amp;doi=10.1016/j.mtbio.2023.100837&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B178-biomolecules-15-00088">
<span class="label">178.</span><cite>Hernández-Esquivel R.-A., Navarro-Tovar G., Zárate-Hernández E., Aguirre-Bañuelos P. Solid Lipid Nanoparticles (SLN) In: Sharma A., editor. Nanocomposite Materials for Biomedical and Energy Storage Applications. IntechOpen; Rijeka, Croatia: 2022. p. Ch. 7.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?title=Nanocomposite%20Materials%20for%20Biomedical%20and%20Energy%20Storage%20Applications&amp;author=R.-A.%20Hern%C3%A1ndez-Esquivel&amp;author=G.%20Navarro-Tovar&amp;author=E.%20Z%C3%A1rate-Hern%C3%A1ndez&amp;author=P.%20Aguirre-Ba%C3%B1uelos&amp;publication_year=2022&amp;isbn=978-1-80355-619-2&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B179-biomolecules-15-00088">
<span class="label">179.</span><cite>Jain A.K., Thareja S. Solid Lipid Nanoparticles. In: Bhushan I., Singh V., Tripathi D., editors. Nanomaterials and Environmental Biotechnology. Springer; Cham, Switzerland: 2020. pp. 221249. Nanotechnology in the Life Sciences.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?title=Nanomaterials%20and%20Environmental%20Biotechnology&amp;author=A.K.%20Jain&amp;author=S.%20Thareja&amp;publication_year=2020&amp;isbn=978-3-030-34544-0&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B180-biomolecules-15-00088">
<span class="label">180.</span><cite>Mukherjee S., Ray S., Thakur R.S. Solid Lipid Nanoparticles: A Modern Formulation Approach in Drug Delivery System. Indian J. Pharm. Sci. 2009;71:349358. doi: 10.4103/0250-474X.57282.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.4103/0250-474X.57282" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC2865805/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/20502539/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Indian%20J.%20Pharm.%20Sci.&amp;title=Solid%20Lipid%20Nanoparticles:%20A%20Modern%20Formulation%20Approach%20in%20Drug%20Delivery%20System&amp;author=S.%20Mukherjee&amp;author=S.%20Ray&amp;author=R.S.%20Thakur&amp;volume=71&amp;publication_year=2009&amp;pages=349-358&amp;pmid=20502539&amp;doi=10.4103/0250-474X.57282&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B181-biomolecules-15-00088">
<span class="label">181.</span><cite>Ghasemiyeh P., Mohammadi-Samani S. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers as Novel Drug Delivery Systems: Applications, Advantages and Disadvantages. Res. Pharm. Sci. 2018;13:288303. doi: 10.4103/1735-5362.235156.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.4103/1735-5362.235156" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC6040163/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/30065762/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Res.%20Pharm.%20Sci.&amp;title=Solid%20Lipid%20Nanoparticles%20and%20Nanostructured%20Lipid%20Carriers%20as%20Novel%20Drug%20Delivery%20Systems:%20Applications,%20Advantages%20and%20Disadvantages&amp;author=P.%20Ghasemiyeh&amp;author=S.%20Mohammadi-Samani&amp;volume=13&amp;publication_year=2018&amp;pages=288-303&amp;pmid=30065762&amp;doi=10.4103/1735-5362.235156&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B182-biomolecules-15-00088">
<span class="label">182.</span><cite>Duan Y., Dhar A., Patel C., Khimani M., Neogi S., Sharma P., Siva Kumar N., Vekariya R.L. A Brief Review on Solid Lipid Nanoparticles: Part and Parcel of Contemporary Drug Delivery Systems. RSC Adv. 2020;10:2677726791. doi: 10.1039/D0RA03491F.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1039/D0RA03491F" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC9055574/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/35515778/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=RSC%20Adv.&amp;title=A%20Brief%20Review%20on%20Solid%20Lipid%20Nanoparticles:%20Part%20and%20Parcel%20of%20Contemporary%20Drug%20Delivery%20Systems&amp;author=Y.%20Duan&amp;author=A.%20Dhar&amp;author=C.%20Patel&amp;author=M.%20Khimani&amp;author=S.%20Neogi&amp;volume=10&amp;publication_year=2020&amp;pages=26777-26791&amp;pmid=35515778&amp;doi=10.1039/D0RA03491F&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B183-biomolecules-15-00088">
<span class="label">183.</span><cite>Salvi V.R., Pawar P. Nanostructured Lipid Carriers (NLC) System: A Novel Drug Targeting Carrier. J. Drug Deliv. Sci. Technol. 2019;51:255267. doi: 10.1016/j.jddst.2019.02.017.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1016/j.jddst.2019.02.017" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=J.%20Drug%20Deliv.%20Sci.%20Technol.&amp;title=Nanostructured%20Lipid%20Carriers%20(NLC)%20System:%20A%20Novel%20Drug%20Targeting%20Carrier&amp;author=V.R.%20Salvi&amp;author=P.%20Pawar&amp;volume=51&amp;publication_year=2019&amp;pages=255-267&amp;doi=10.1016/j.jddst.2019.02.017&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B184-biomolecules-15-00088">
<span class="label">184.</span><cite>Viegas C., Patrício A.B., Prata J.M., Nadhman A., Chintamaneni P.K., Fonte P. Solid Lipid Nanoparticles vs. Nanostructured Lipid Carriers: A Comparative Review. Pharmaceutics. 2023;15:1593. doi: 10.3390/pharmaceutics15061593.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3390/pharmaceutics15061593" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC10305282/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/37376042/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Pharmaceutics&amp;title=Solid%20Lipid%20Nanoparticles%20vs.%20Nanostructured%20Lipid%20Carriers:%20A%20Comparative%20Review&amp;author=C.%20Viegas&amp;author=A.B.%20Patr%C3%ADcio&amp;author=J.M.%20Prata&amp;author=A.%20Nadhman&amp;author=P.K.%20Chintamaneni&amp;volume=15&amp;publication_year=2023&amp;pages=1593&amp;pmid=37376042&amp;doi=10.3390/pharmaceutics15061593&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B185-biomolecules-15-00088">
<span class="label">185.</span><cite>Chauhan I., Yasir M., Verma M., Singh A.P. Nanostructured Lipid Carriers: A Groundbreaking Approach for Transdermal Drug Delivery. Adv. Pharm. Bull. 2020;10:150165. doi: 10.34172/apb.2020.021.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.34172/apb.2020.021" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC7191226/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/32373485/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Adv.%20Pharm.%20Bull.&amp;title=Nanostructured%20Lipid%20Carriers:%20A%20Groundbreaking%20Approach%20for%20Transdermal%20Drug%20Delivery&amp;author=I.%20Chauhan&amp;author=M.%20Yasir&amp;author=M.%20Verma&amp;author=A.P.%20Singh&amp;volume=10&amp;publication_year=2020&amp;pages=150-165&amp;pmid=32373485&amp;doi=10.34172/apb.2020.021&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B186-biomolecules-15-00088">
<span class="label">186.</span><cite>Khan S., Sharma A., Jain V. An Overview of Nanostructured Lipid Carriers and Its Application in Drug Delivery through Different Routes. Adv. Pharm. Bull. 2023;13:446460. doi: 10.34172/apb.2023.056.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.34172/apb.2023.056" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC10460807/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/37646052/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Adv.%20Pharm.%20Bull.&amp;title=An%20Overview%20of%20Nanostructured%20Lipid%20Carriers%20and%20Its%20Application%20in%20Drug%20Delivery%20through%20Different%20Routes&amp;author=S.%20Khan&amp;author=A.%20Sharma&amp;author=V.%20Jain&amp;volume=13&amp;publication_year=2023&amp;pages=446-460&amp;pmid=37646052&amp;doi=10.34172/apb.2023.056&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B187-biomolecules-15-00088">
<span class="label">187.</span><cite>Akombaetwa N., Ilangala A.B., Thom L., Memvanga P.B., Witika B.A., Buya A.B. Current Advances in Lipid Nanosystems Intended for Topical and Transdermal Drug Delivery Applications. Pharmaceutics. 2023;15:656. doi: 10.3390/pharmaceutics15020656.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3390/pharmaceutics15020656" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC9967415/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/36839978/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Pharmaceutics&amp;title=Current%20Advances%20in%20Lipid%20Nanosystems%20Intended%20for%20Topical%20and%20Transdermal%20Drug%20Delivery%20Applications&amp;author=N.%20Akombaetwa&amp;author=A.B.%20Ilangala&amp;author=L.%20Thom&amp;author=P.B.%20Memvanga&amp;author=B.A.%20Witika&amp;volume=15&amp;publication_year=2023&amp;pages=656&amp;pmid=36839978&amp;doi=10.3390/pharmaceutics15020656&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B188-biomolecules-15-00088">
<span class="label">188.</span><cite>Kalvodová A., Zbytovská J. Lipid Nanocapsules Enhance the Transdermal Delivery of Drugs Regardless of Their Physico-Chemical Properties. Int. J. Pharm. 2022;628:122264. doi: 10.1016/j.ijpharm.2022.122264.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1016/j.ijpharm.2022.122264" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/36209979/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Int.%20J.%20Pharm.&amp;title=Lipid%20Nanocapsules%20Enhance%20the%20Transdermal%20Delivery%20of%20Drugs%20Regardless%20of%20Their%20Physico-Chemical%20Properties&amp;author=A.%20Kalvodov%C3%A1&amp;author=J.%20Zbytovsk%C3%A1&amp;volume=628&amp;publication_year=2022&amp;pages=122264&amp;pmid=36209979&amp;doi=10.1016/j.ijpharm.2022.122264&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B189-biomolecules-15-00088">
<span class="label">189.</span><cite>Dabholkar N., Waghule T., Krishna Rapalli V., Gorantla S., Alexander A., Narayan Saha R., Singhvi G. Lipid Shell Lipid Nanocapsules as Smart Generation Lipid Nanocarriers. J. Mol. Liq. 2021;339:117145. doi: 10.1016/j.molliq.2021.117145.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1016/j.molliq.2021.117145" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=J.%20Mol.%20Liq.&amp;title=Lipid%20Shell%20Lipid%20Nanocapsules%20as%20Smart%20Generation%20Lipid%20Nanocarriers&amp;author=N.%20Dabholkar&amp;author=T.%20Waghule&amp;author=V.%20Krishna%20Rapalli&amp;author=S.%20Gorantla&amp;author=A.%20Alexander&amp;volume=339&amp;publication_year=2021&amp;pages=117145&amp;doi=10.1016/j.molliq.2021.117145&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B190-biomolecules-15-00088">
<span class="label">190.</span><cite>Oliveira C., Coelho C., Teixeira J.A., Ferreira-Santos P., Botelho C.M. Nanocarriers as Active Ingredients Enhancers in the Cosmetic Industry—The European and North America Regulation Challenges. Molecules. 2022;27:1669. doi: 10.3390/molecules27051669.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.3390/molecules27051669" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="/articles/PMC8911847/">PMC free article</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/35268769/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Molecules&amp;title=Nanocarriers%20as%20Active%20Ingredients%20Enhancers%20in%20the%20Cosmetic%20Industry%E2%80%94The%20European%20and%20North%20America%20Regulation%20Challenges&amp;author=C.%20Oliveira&amp;author=C.%20Coelho&amp;author=J.A.%20Teixeira&amp;author=P.%20Ferreira-Santos&amp;author=C.M.%20Botelho&amp;volume=27&amp;publication_year=2022&amp;pages=1669&amp;pmid=35268769&amp;doi=10.3390/molecules27051669&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B191-biomolecules-15-00088">
<span class="label">191.</span><cite>Patravale V.B., Mandawgade S.D. Novel Cosmetic Delivery Systems: An Application Update. Int. J. Cosmet. Sci. 2008;30:1933. doi: 10.1111/j.1468-2494.2008.00416.x.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1111/j.1468-2494.2008.00416.x" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/18377627/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Int.%20J.%20Cosmet.%20Sci.&amp;title=Novel%20Cosmetic%20Delivery%20Systems:%20An%20Application%20Update&amp;author=V.B.%20Patravale&amp;author=S.D.%20Mandawgade&amp;volume=30&amp;publication_year=2008&amp;pages=19-33&amp;pmid=18377627&amp;doi=10.1111/j.1468-2494.2008.00416.x&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B192-biomolecules-15-00088">
<span class="label">192.</span><cite>Silvestrini A.V.P., Garcia Praça F., Leite M.N., de Abreu Fantini M.C., Frade M.A.C., Badra Bentley M.V.L. Liquid Crystalline Nanoparticles Enable a Multifunctional Approach for Topical Psoriasis Therapy by Co-Delivering Triptolide and SiRNAs. Int. J. Pharm. 2023;640:123019. doi: 10.1016/j.ijpharm.2023.123019.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1016/j.ijpharm.2023.123019" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/37149114/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Int.%20J.%20Pharm.&amp;title=Liquid%20Crystalline%20Nanoparticles%20Enable%20a%20Multifunctional%20Approach%20for%20Topical%20Psoriasis%20Therapy%20by%20Co-Delivering%20Triptolide%20and%20SiRNAs&amp;author=A.V.P.%20Silvestrini&amp;author=F.%20Garcia%20Pra%C3%A7a&amp;author=M.N.%20Leite&amp;author=M.C.%20de%20Abreu%20Fantini&amp;author=M.A.C.%20Frade&amp;volume=640&amp;publication_year=2023&amp;pages=123019&amp;pmid=37149114&amp;doi=10.1016/j.ijpharm.2023.123019&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B193-biomolecules-15-00088">
<span class="label">193.</span><cite>Rapalli V.K., Waghule T., Hans N., Mahmood A., Gorantla S., Dubey S.K., Singhvi G. Insights of Lyotropic Liquid Crystals in Topical Drug Delivery for Targeting Various Skin Disorders. J. Mol. Liq. 2020;315:113771. doi: 10.1016/j.molliq.2020.113771.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1016/j.molliq.2020.113771" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=J.%20Mol.%20Liq.&amp;title=Insights%20of%20Lyotropic%20Liquid%20Crystals%20in%20Topical%20Drug%20Delivery%20for%20Targeting%20Various%20Skin%20Disorders&amp;author=V.K.%20Rapalli&amp;author=T.%20Waghule&amp;author=N.%20Hans&amp;author=A.%20Mahmood&amp;author=S.%20Gorantla&amp;volume=315&amp;publication_year=2020&amp;pages=113771&amp;doi=10.1016/j.molliq.2020.113771&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
<li id="B194-biomolecules-15-00088">
<span class="label">194.</span><cite>Chountoulesi M., Perinelli D.R., Forys A., Bonacucina G., Trzebicka B., Pispas S., Demetzos C. Liquid Crystalline Nanoparticles for Drug Delivery: The Role of Gradient and Block Copolymers on the Morphology, Internal Organisation and Release Profile. Eur. J. Pharm. Biopharm. 2021;158:2134. doi: 10.1016/j.ejpb.2020.08.008.</cite> [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://doi.org/10.1016/j.ejpb.2020.08.008" rel="noopener noreferrer" target="_blank">DOI</a>] [<a class="usa-link" href="https://pubmed.ncbi.nlm.nih.gov/33098976/">PubMed</a>] [<a class="usa-link usa-link--external" data-ga-action="click_feat_suppl" href="https://scholar.google.com/scholar_lookup?journal=Eur.%20J.%20Pharm.%20Biopharm.&amp;title=Liquid%20Crystalline%20Nanoparticles%20for%20Drug%20Delivery:%20The%20Role%20of%20Gradient%20and%20Block%20Copolymers%20on%20the%20Morphology,%20Internal%20Organisation%20and%20Release%20Profile&amp;author=M.%20Chountoulesi&amp;author=D.R.%20Perinelli&amp;author=A.%20Forys&amp;author=G.%20Bonacucina&amp;author=B.%20Trzebicka&amp;volume=158&amp;publication_year=2021&amp;pages=21-34&amp;pmid=33098976&amp;doi=10.1016/j.ejpb.2020.08.008&amp;" rel="noopener noreferrer" target="_blank">Google Scholar</a>]</li>
</ul></section></section><section class="associated-data" id="_ad93_" lang="en"><h2 class="pmc_sec_title">Associated Data</h2>
<p class="font-secondary"><em>This section collects any data citations, data availability statements, or supplementary materials included in this article.</em></p>
<section class="data-availability-statement" id="_adda93_" lang="en"><h3 class="pmc_sec_title">Data Availability Statement</h3>
<p>No new data were created or analyzed in this study. Data sharing is not applicable to this article.</p></section></section></section></div></body></html>

View File

@ -0,0 +1,117 @@
<meta charset='utf-8'>
<base target='_blank'>
<style>
body{font-family:system-ui,sans-serif;max-width:50rem;margin:2rem auto;line-height:1.6;padding:1rem}
img,iframe{max-width:100%}
.post-content{background:#f9f9f9;padding:1rem;border-radius:5px;margin:1rem 0}
.archive-header{background:#f0f8ff;border:1px solid #e0e0e0;border-radius:5px;padding:0.75rem;margin-bottom:1rem;font-size:0.9rem}
.archive-info{margin-bottom:0.5rem;color:#666}
.archive-source{color:#666}
.archive-header a{color:#007acc;text-decoration:none}
.archive-header a:hover{text-decoration:underline}
@media (prefers-color-scheme: dark) {
.archive-header{background:#1a1a2e;border-color:#333;color:#e0e0e0}
.archive-info, .archive-source{color:#ccc}
.archive-header a{color:#66b3ff}
}
</style>
<div class="archive-header">
<div class="archive-info">
<strong>📄 Archived:</strong> 2025-08-31 11:56:15 UTC
</div>
<div class="archive-source">
<strong>🔗 Source:</strong> <a href="https://pubmed.ncbi.nlm.nih.gov/23732711/">https://pubmed.ncbi.nlm.nih.gov/23732711/</a>
</div>
</div>
<script>
// Archive metadata for cache management
window.archiveData = {
url: 'https://pubmed.ncbi.nlm.nih.gov/23732711/',
archivedAt: "2025-08-31T11:56:15.848119+00:00Z",
timestamp: 1756641375848
};
</script>
<hr>
<h1>Sunscreen and prevention of skin aging: a randomized trial</h1>
<html><body><div><div class="abstract-content selected" id="eng-abstract">
<p>
<strong class="sub-title">
Background:
</strong>
Sunscreen use and dietary antioxidants are advocated as preventives of skin aging, but supporting evidence is lacking.
</p>
<p>
<strong class="sub-title">
Objective:
</strong>
To determine whether regular use of sunscreen compared with discretionary use or β-carotene supplements compared with placebo retard skin aging, measured by degree of photoaging.
</p>
<p>
<strong class="sub-title">
Design:
</strong>
Randomized, controlled, community-based intervention. (Australian New Zealand Clinical Trials Registry: ACTRN12610000086066).
</p>
<p>
<strong class="sub-title">
Setting:
</strong>
Nambour, Australia (latitude 26° S).
</p>
<p>
<strong class="sub-title">
Patients:
</strong>
903 adults younger than 55 years out of 1621 adults randomly selected from a community register.
</p>
<p>
<strong class="sub-title">
Intervention:
</strong>
Random assignment into 4 groups: daily use of broad-spectrum sunscreen and 30 mg of β-carotene, daily use of sunscreen and placebo, discretionary use of sunscreen and 30 mg of β-carotene, and discretionary use of sunscreen and placebo.
</p>
<p>
<strong class="sub-title">
Measurements:
</strong>
Change in microtopography between 1992 and 1996 in the sunscreen and β-carotene groups compared with controls, graded by assessors blinded to treatment allocation.
</p>
<p>
<strong class="sub-title">
Results:
</strong>
The daily sunscreen group showed no detectable increase in skin aging after 4.5 years. Skin aging from baseline to the end of the trial was 24% less in the daily sunscreen group than in the discretionary sunscreen group (relative odds, 0.76 [95% CI, 0.59 to 0.98]). β-Carotene supplementation had no overall effect on skin aging, although contrasting associations were seen in subgroups with different severity of aging at baseline.
</p>
<p>
<strong class="sub-title">
Limitation:
</strong>
Some outcome data were missing, and power to detect moderate treatment effects was modest.
</p>
<p>
<strong class="sub-title">
Conclusion:
</strong>
Regular sunscreen use retards skin aging in healthy, middle-aged men and women. No overall effect of β-carotene on skin aging was identified, and further study is required to definitively exclude potential benefit or potential harm.
</p>
<p>
<strong class="sub-title">
Primary funding source:
</strong>
National Health and Medical Research Council of Australia.
</p>
</div>
</div></body></html>

View File

@ -0,0 +1,75 @@
<meta charset='utf-8'>
<base target='_blank'>
<style>
body{font-family:system-ui,sans-serif;max-width:50rem;margin:2rem auto;line-height:1.6;padding:1rem}
img,iframe{max-width:100%}
.post-content{background:#f9f9f9;padding:1rem;border-radius:5px;margin:1rem 0}
.archive-header{background:#f0f8ff;border:1px solid #e0e0e0;border-radius:5px;padding:0.75rem;margin-bottom:1rem;font-size:0.9rem}
.archive-info{margin-bottom:0.5rem;color:#666}
.archive-source{color:#666}
.archive-header a{color:#007acc;text-decoration:none}
.archive-header a:hover{text-decoration:underline}
@media (prefers-color-scheme: dark) {
.archive-header{background:#1a1a2e;border-color:#333;color:#e0e0e0}
.archive-info, .archive-source{color:#ccc}
.archive-header a{color:#66b3ff}
}
</style>
<div class="archive-header">
<div class="archive-info">
<strong>📄 Archived:</strong> 2025-08-31 11:56:16 UTC
</div>
<div class="archive-source">
<strong>🔗 Source:</strong> <a href="https://pubmed.ncbi.nlm.nih.gov/27749441/">https://pubmed.ncbi.nlm.nih.gov/27749441/</a>
</div>
</div>
<script>
// Archive metadata for cache management
window.archiveData = {
url: 'https://pubmed.ncbi.nlm.nih.gov/27749441/',
archivedAt: "2025-08-31T11:56:16.084864+00:00Z",
timestamp: 1756641376084
};
</script>
<hr>
<h1>Daily Use of a Facial Broad Spectrum Sunscreen Over One-Year Significantly Improves Clinical Evaluation of Photoaging</h1>
<html><body><div><div class="abstract-content selected" id="eng-abstract">
<p>
<strong class="sub-title">
Background:
</strong>
Sunscreens are known to protect from sun damage; however, their effects on the reversal of photodamage have been minimally investigated.
</p>
<p>
<strong class="sub-title">
Objective:
</strong>
The aim of the prospective study was to evaluate the efficacy of a facial sun protection factor (SPF) 30 formulation for the improvement of photodamage during a 1-year use.
</p>
<p>
<strong class="sub-title">
Methods:
</strong>
Thirty-two subjects applied a broad spectrum photostable sunscreen (SPF 30) for 52 weeks to the entire face. Assessments were conducted through dermatologist evaluations and subjects' self-assessment at baseline and then at Weeks 12, 24, 36, and 52.
</p>
<p>
<strong class="sub-title">
Results:
</strong>
Clinical evaluations showed that all photoaging parameters improved significantly from baseline as early as Week 12 and the amelioration continued until Week 52. Skin texture, clarity, and mottled and discrete pigmentation were the most improved parameters by the end of the study (40% to 52% improvement from baseline), with 100% of subjects showing improvement in skin clarity and texture.
</p>
<p>
<strong class="sub-title">
Conclusion:
</strong>
The daily use of a facial broad-spectrum photostable sunscreen may visibly reverse the signs of existing photodamage, in addition to preventing additional sun damage.
</p>
</div>
</div></body></html>